

Statics and Mechanics of Materials

SIXTH EDITION IN SI UNITS

R. C. Hibbeler

STATICS AND MECHANICS OF MATERIALS

SIXTH EDITION IN SI UNITS

Statics and Mechanics of Materials, SI Units

Table of Contents

	\sim	. ,	_	r
()	ינו	v	-	ı

Half Title

Title Page

Copyright

Dedication

Preface

Your work...

With the Power of Mastering Engineering for Statics and Mechanics of Materials

Contents

Credits

Chapter 1. General Principles

Chapter Objectives

- 1.1 Mechanics
- 1.2 Fundamental Concepts
- 1.3 The International System of Units
- 1.4 Numerical Calculations
- 1.5 General Procedure for Analysis

Chapter 2. Force Vectors

Chapter Objectives

- 2.1 Scalars and Vectors
- 2.2 Vector Operations

- 2.3 Vector Addition of Forces
- 2.4 Addition of a System of Coplanar Forces
- 2.5 Cartesian Vectors
- 2.6 Addition of Cartesian Vectors
- 2.7 Position Vectors
- 2.8 Force Vector Directed Along a Line
- 2.9 Dot Product

Chapter Review

Review Problems

Chapter 3. Force System Resultants

Chapter Objectives

- 3.1 Moment of a ForceScalar Formulation
- 3.2 Principle of Moments
- 3.3 Cross Product
- 3.4 Moment of a ForceVector Formulation
- 3.5 Moment of a Force about a Specified Axis
- 3.6 Moment of a Couple
- 3.7 Simplification of a Force and Couple System
- 3.8 Further Simplification of a Force and Couple System
- 3.9 Reduction of a Simple Distributed Loading

Chapter Review

Review Problems

Chapter 4. Equilibrium of a Rigid Body

Chapter Objectives

4.1 Conditions for Rigid-Body Equilibrium

Equilibrium in two Dimensions

4.2 Free-Body Diagrams

- 4.3 Equations of Equilibrium
- 4.4 Two- and Three-Force Members

Equilibrium in three Dimensions

- 4.5 Free-Body Diagrams
- 4.6 Equations of Equilibrium
- 4.7 Characteristics of Dry Friction
- 4.8 Problems Involving Dry Friction

Chapter Review

Review Problems

Chapter 5. Structural Analysis

Chapter Objectives

- 5.1 Simple Trusses
- 5.2 The Method of Joints
- 5.3 Zero-Force Members
- 5.4 The Method of Sections
- 5.5 Frames and Machines

Chapter Review

Review Problems

Chapter 6. Center of Gravity, Centroid, and Moment of Inertia

Chapter Objectives

- 6.1 Center of Gravity and the Centroid of a Body
- 6.2 Composite Bodies
- 6.3 Moments of Inertia for Areas
- 6.4 Parallel-Axis Theorem for an Area
- 6.5 Moments of Inertia for Composite Areas

Chapter Review

Chapter 7. Stress and Strain

Chapter Objectives

- 7.1 Introduction
- 7.2 Internal Resultant Loadings
- 7.3 Stress
- 7.4 Average Normal Stress in an Axially Loaded Bar
- 7.5 Average Shear Stress
- 7.6 Allowable Stress Design
- 7.7 Deformation
- 7.8 Strain

Chapter Review

Review Problems

Chapter 8. Mechanical Properties of Materials

Chapter Objectives

- 8.1 The Tension and Compression Test
- 8.2 The StressStrain Diagram
- 8.3 StressStrain Behavior of Ductile and Brittle Materials
- 8.4 Strain Energy
- 8.5 Poissons Ratio
- 8.6 The Shear StressStrain Diagram

Chapter Review

Review Problems

Chapter 9. Axial Load

Chapter Objectives

- 9.1 Saint-Venants Principle
- 9.2 Elastic Displacement of an Axially Loaded Member
- 9.3 Principle of Superposition
- 9.4 Statically Indeterminate Axially Loaded Members

- 9.5 The Force Method of Analysis for Axially Loaded Members
- 9.6 Thermal Stress
- 9.7 Stress Concentrations

Chapter Review

Review Problems

Chapter 10. Torsion

Chapter Objectives

- 10.1 Torsional Deformation of a Circular Shaft
- 10.2 The Torsion Formula
- 10.3 Power Transmission
- 10.4 Angle of Twist
- 10.5 Statically Indeterminate Torque-Loaded Members
- *10.6 Solid Noncircular Shafts
- 10.7 Stress Concentration

Chapter Review

Review Problems

Chapter 11. Bending

Chapter Objectives

- 11.1 Internal Loading as a Function of Position
- 11.2 Graphical Method for Constructing Shear and Moment Diagrams
- 11.3 Bending Deformation of a Straight Member
- 11.4 The Flexure Formula
- 11.5 Unsymmetric Bending
- 11.6 Stress Concentrations

Chapter Review

Review Problems

Chapter 12. Transverse Shear

Chapter	Ohi	iectiv	/_0
Unapler	\cup \cup	Jectiv	/ US

- 12.1 Shear in Straight Members
- 12.2 The Shear Formula
- 12.3 Shear Flow in Built-Up Members

Chapter Review

Review Problems

Chapter 13. Combined Loadings

Chapter Objectives

- 13.1 Thin-Walled Pressure Vessels
- 13.2 State of Stress Caused by Combined Loadings

Chapter Review

Review Problems

Chapter 14. Stress and Strain Transformation

Chapter Objectives

- 14.1 Plane-Stress Transformation
- 14.2 General Equations of Plane Stress Transformation
- 14.3 Principal Stresses and Maximum In-Plane Shear Stress
- 14.4 Mohrs CirclePlane Stress
- 14.5 Absolute Maximum Shear Stress
- 14.6 Plane Strain
- 14.7 General Equations of Plane-Strain Transformation
- 14.8 Mohrs CirclePlane Strain
- *14.9 Absolute Maximum Shear Strain
- 14.10 Strain Rosettes
- 14.11 Material Property Relationships

Chapter Review

Review Problems

Chapter 15. Design of Beams and Shafts

Chapter Objectives

15.1 Basis for Beam Design

15.2 Prismatic Beam Design

Chapter Review

Chapter 16. Deflection of Beams and Shafts

Chapter Objectives

16.1 The Elastic Curve

16.2 Slope and Displacement by Integration

* 16.3 Discontinuity Functions

16.4 Method of Superposition

16.5 Statically Indeterminate Beams and ShaftsMethod of Superposition

Chapter Review

Review Problems

Chapter 17. Buckling of Columns

Chapter Objectives

17.1 Critical Load

17.2 Ideal Column with Pin Supports

17.3 Columns Having Various Types of Supports

*17.4 The Secant Formula

Chapter Review

Review Problems

Appendices

Appendix A. Mathematical Review and Expressions

Appendix B. Geometric Properties of an Area and Volume

Appendix C. Geometric Properties of Structural Shapes

Appendix D. Slopes and Deflections of Beams

Fundamental Problem Solutions Answers to Selected Problems Index

Fundamental Equations of Statics and Mechanics of Materials Average Mechanical Properties of Typical Engineering Materials