Petrucci's

GENERAL CHEMISTRY

Principles and Modern Applications

TWELFTH EDITION

Petrucci | Herring | Madura | Bissonnette

+
I
le
Elements
le
H
e
the
of
P
able
ૃંત્વ
Н
ic
7
Periodic
eri
Pe

18 8A	2 He 4.0026	10 Ne 20.180	18 Ar 39.948	36 Kr 83.798	54 Xe 131.29	86 Rn (222)	118 Og (294)
	17 7A	9 F 18.998	17 Cl 35.45	35 Br 79.904	53 I 126.90	85 At (210)	117 Ts (294)
	16 6A	8 O 15.999	16 S 32.06	34 Se 78.97	52 Te 127.60	84 Po (209)	116 Lv (293)
	15 5A	7 N 14.007	15 P 30.974	33 As 74.922	51 Sb 121.76	83 Bi 208.98	115 Mc (290)
	14 4A	6 C 12.011	14 Si 28.085	32 Ge 72.630	50 Sn 118.71	82 Pb 207.2	114 F1 (290)
	13 3A	5 B 10.81	13 A1 26.982	31 Ga 69.723	49 In 114.82	81 T1 204.38	113 Nh (286)
			12 2B	30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)
			11 1B	29 Cu 63.546	47 Ag 107.87	79 Au 196.97	111 Rg (282)
			10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	110 Ds (281)
			9 -88-	27 Co 58.933	45 Rh 102.91	77 Ir 192.22	109 Mt (277)
			∞	26 Fe 55.845	44 Ru 101.07	76 Os 190.23	108 Hs (269)
			78 × 7	25 Mn 54.938	43 Tc (98)	75 Re 186.21	107 Bh (270)
			6 6B	24 Cr 51.996	42 Mo 95.95	74 W 183.84	106 Sg (269)
			5 5B	23 V 50.942	41 Nb 92.906	73 Ta 181.0	105 Db (268)
			4B	22 Ti 47.867	40 Zr 91.224	72 Hf 178.49	104 Rf (267)
			3 3B	21 Sc 44.956	39 Y 88.906	57-71 La-Lu	89–103 Ac–Lr
	2 A	4 Be 9.0122	12 Mg 24.305	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra (226)
1 4	1 H 1.008	3 Li 6.94	11 Na 22.990	19 K 39.098	37 Rb 85.468	55 Cs 132.91	87 Fr (223)
	\vdash	7	8	4	rv	9	
				boire	Ъ		

objachtac	57	28	59	09	61	62	63	64	65	99	29	89	69	2	7
Lailulaillac	La	Ce	Pr	pN	Pm	Sm	Eu	Вd	Tb	Dy	Ho	Er	Tm	Хþ	Lu
	138.91	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.01	174.97
11	68	06	91	92	93	94	95	96	46	86	66	100	101	102	103
Actinide	Ac	Th	Pa	D	Np	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	S _o	Lr
Sal	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(229)	(292)

[†]Based on the version endorsed by the International Union of Pure and Applied Chemistry (IUPAC) on May 4, 2022.

Notes:

^{1.} Atomic masses are from Pure Appl. Chem. Vol. 85, No. 5, pp. 1047–1078, 2013. They are given here with five significant figures where possible.
2. For H, Li, B, C, N, O, Mg, Si, S, Cl, Br, and Tl, the conventional atomic mass, a representative value from the atomic mass interval, is provided. (See page 77.)

Petrucci's General Chemistry: Principles and Modern Applications -- eBook

Table of Contents

_	`					
•	- 1	\smallfrown	١.	,,	\neg	r
	•		W	4	_	

Periodic Table of the Elements

Title Page

Copyright

Dedication

Pearsons Commitment to Diversity, Equity, and Inclusion

Contents

About the Authors

Preface

Acknowledgments

Chapter 1. Matter: Its Properties and Measurement

- 1-1 The Scientific Method
- 1-2 Properties of Matter
- 1-3 Classification of Matter
- 1-4 Measurement of Matter: SI (Metric) Units
- 1-5 Density and Percent Composition: Their Use in Problem Solving
- 1-6 Uncertainties in Scientific Measurements
- 1-7 Significant Figures

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 2. Atoms and the Atomic Theory

- 2-1 Early Chemical Discoveries and the Atomic Theory
- 2-2 Electrons and Other Discoveries in Atomic Physics

- 2-3 The Nuclear Atom
- 2-4 Chemical Elements
- 2-5 Atomic Mass
- 2-6 Introduction to the Periodic Table
- 2-7 The Concept of the Mole and the Avogadro Constant
- 2-8 Using the Mole Concept in Calculations

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 3. Chemical Compounds

- 3-1 Types of Chemical Compounds and Their Formulas
- 3-2 The Mole Concept and Chemical Compounds
- 3-3 Composition of Chemical Compounds
- 3-4 Oxidation States: A Useful Tool in Describing Chemical Compounds
- 3-5 Naming Compounds: Organic and Inorganic Compounds
- 3-6 Names and Formulas of Inorganic Compounds
- 3-7 Names and Formulas of Organic Compounds

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 4. Chemical Reactions

- 4-1 Chemical Reactions and Chemical Equations
- 4-2 Chemical Equations and Stoichiometry
- 4-3 Chemical Reactions in Solution
- 4-4 Determining the Limiting Reactant
- 4-5 Other Practical Matters in Reaction Stoichiometry
- 4-6 The Extent of Reaction

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 5. Introduction to Reactions in Aqueous Solutions

- 5-1 The Nature of Aqueous Solutions
- 5-2 Precipitation Reactions
- 5-3 AcidBase Reactions
- 5-4 OxidationReduction Reactions: Some General Principles
- 5-5 Balancing OxidationReduction Equations
- 5-6 Oxidizing and Reducing Agents
- 5-7 Stoichiometry of Reactions in Aqueous Solutions: Titrations

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 6. Gases

- 6-1 Properties of Gases: Gas Pressure
- 6-2 The Simple Gas Laws
- 6-3 Combining the Gas Laws: The Ideal Gas Equation and the General Gas Equation
- 6-4 Applications of the Ideal Gas Equation
- 6-5 Gases in Chemical Reactions
- 6-6 Mixtures of Gases
- 6-7 KineticMolecular Theory of Gases
- 6-8 Gas Properties Relating to the KineticMolecular Theory
- 6-9 Nonideal (Real) Gases

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 7. Thermochemistry

- 7-1 Getting Started: Some Terminology
- 7-2 Heat
- 7-3 Heats of Reaction and Calorimetry
- 7-4 Work
- 7-5 The First Law of Thermodynamics
- 7-6 Application of the First Law to Chemical and Physical Changes
- 7-7 Indirect Determination of rH: Hess's Law
- 7-8 Standard Enthalpies of Formation
- 7-9 Fuels as Sources of Energy
- 7-10 Spontaneous and Nonspontaneous Processes: An Introduction

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 8. Electrons in Atoms

- 8-1 Electromagnetic Radiation
- 8-2 Prelude to Quantum Theory
- 8-3 Energy Levels, Spectrum, and Ionization Energy of the Hydrogen Atom
- 8-4 Two Ideas Leading to Quantum Mechanics
- 8-5 Wave Mechanics
- 8-6 Quantum Theory of the Hydrogen Atom
- 8-7 Interpreting and Representing the Orbitals of the Hydrogen Atom
- 8-8 Electron Spin: A Fourth Quantum Number
- 8-9 Multielectron Atoms
- 8-10 Electron Configurations
- 8-11 Electron Configurations and the Periodic Table

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 9. The Periodic Table and Some Atomic Properties

- 9-1 Classifying the Elements: The Periodic Law and the Periodic Table
- 9-2 Metals and Nonmetals and Their Ions
- 9-3 Sizes of Atoms and Ions
- 9-4 Ionization Energy
- 9-5 Electron Affinity
- 9-6 Magnetic Properties
- 9-7 Polarizability

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 10. Chemical Bonding I: Basic Concepts

- 10-1 Lewis Theory: An Overview
- 10-2 Covalent Bonding: An Introduction
- 10-3 Polar Covalent Bonds and Electrostatic Potential Maps
- 10-4 Writing Lewis Structures
- 10-5 Resonance
- 10-6 Exceptions to the Octet Rule
- 10-7 Shapes of Molecules
- 10-8 Bond Order and Bond Lengths
- 10-9 Bond Energies

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises
Feature Problems
Self-Assessment Exercises
apter 11. Chemical Bonding II: \
Theories

Chapter 11. Chemical Bonding II: Valence Bond and Molecular Orbital

- 11-1 What a Bonding Theory Should Do
- 11-2 Introduction to the Valence Bond Method
- 11-3 Hybridization of Atomic Orbitals
- 11-4 Multiple Covalent Bonds
- 11-5 Molecular Orbital Theory
- 11-6 Delocalized Electrons: An Explanation Based on Molecular Orbital Theory
- 11-7 Some Unresolved Issues: Can Electron Density Plots Help?

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 12. Intermolecular Forces: Liquids and Solids

- 12-1 Intermolecular Forces
- 12-2 Some Properties of Liquids
- 12-3 Some Properties of Solids
- 12-4 Phase Diagrams
- 12-5 The Nature of Bonding in Solids
- 12-6 Crystal Structures
- 12-7 Energy Changes in the Formation of Ionic Crystals

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 13. Spontaneous Change: Entropy and Gibbs Energy

- 13-1 Entropy: Boltzmanns View
- 13-2 Entropy Change: Clausiuss View
- 13-3 Combining Boltzmanns and Clausiuss Ideas: Absolute Entropies
- 13-4 Criterion for Spontaneous Change: The Second Law of Thermodynamics
- 13-5 Gibbs Energy Change of a System of Variable Composition: rG° and rG
- 13-6 rG° and K as Functions of Temperature
- 13-7 Coupled Reactions
- 13-8 Chemical Potential and Thermodynamics of Spontaneous Chemical Change

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 14. Solutions and Their Physical Properties

- 14-1 Types of Solutions: Some Terminology
- 14-2 Solution Concentration
- 14-3 Intermolecular Forces and the Solution Process
- 14-4 Solution Formation and Equilibrium
- 14-5 Solubilities of Gases
- 14-6 Vapor Pressures of Solutions
- 14-7 Osmotic Pressure
- 14-8 Freezing-Point Depression and Boiling-Point Elevation of Nonelectrolyte Solutions
- 14-9 Solutions of Electrolytes
- 14-10 Colloidal Mixtures

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 15. Chemical Kinetics

- 15-1 Rate of a Chemical Reaction
- 15-2 Measuring Reaction Rates
- 15-3 Effect of Concentration on Reaction Rates: The Rate Law
- 15-4 Zero-Order Reactions
- 15-5 First-Order Reactions
- 15-6 Second-Order Reactions
- 15-7 Reaction Kinetics: A Summary
- 15-8 Theoretical Models for Chemical Kinetics
- 15-9 The Effect of Temperature on Reaction Rates
- 15-10 Reaction Mechanisms
- 15-11 Catalysis
- Summary
- Integrative Example
- **Exercises**
- Integrative and Advanced Exercises
- Feature Problems
- Self-Assessment Exercises

Chapter 16. Principles of Chemical Equilibrium

- 16-1 The Nature of the Equilibrium State
- 16-2 The Equilibrium Constant Expression
- 16-3 Relationships Involving Equilibrium Constants
- 16-4 The Magnitude of an Equilibrium Constant
- 16-5 Predicting the Direction of Net Chemical Change
- 16-6 Altering Equilibrium Conditions: Le Châteliers Principle
- 16-7 Equilibrium Calculations: Some Illustrative Examples
- Summary
- Integrative Example
- **Exercises**
- Integrative and Advanced Exercises
- Feature Problems
- Self-Assessment Exercises
- Chapter 17. Acids and Bases

- 17-1 Acids, Bases, and Conjugate AcidBase Pairs
- 17-2 Self-Ionization of Water and the pH Scale
- 17-3 Ionization of Acids and Bases in Water
- 17-4 Strong Acids and Strong Bases
- 17-5 Weak Acids and Weak Bases
- 17-6 Polyprotic Acids
- 17-7 Simultaneous or Consecutive AcidBase Reactions: A General Approach
- 17-8 lons as Acids and Bases
- 17-9 Qualitative Aspects of AcidBase Reactions
- 17-10 Molecular Structure and AcidBase Behavior
- 17-11 Lewis Acids and Bases

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 18. Additional Aspects of AcidBase Equilibria

- 18-1 Common-Ion Effect in AcidBase Equilibria
- 18-2 Buffer Solutions
- 18-3 AcidBase Indicators
- 18-4 Neutralization Reactions and Titration Curves
- 18-5 Solutions of Salts of Polyprotic Acids
- 18-6 AcidBase Equilibrium Calculations: A Summary

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 19. Solubility and Complex-Ion Equilibria

- 19-1 Solubility Product Constant, Ksp
- 19-2 Relationship Between Solubility and Ksp

- 19-3 Common-Ion Effect in Solubility Equilibria
- 19-4 Limitations of the Ksp Concept
- 19-5 Criteria for Precipitation and Its Completeness
- 19-6 Fractional Precipitation
- 19-7 Solubility and pH
- 19-8 Equilibria Involving Complex Ions
- 19-9 Qualitative Cation Analysis

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 20. Electrochemistry

- 20-1 Electrode Potentials and Their Measurement
- 20-2 Standard Electrode Potentials
- 20-3 Ecell, rG, and K
- 20-4 Ecell as a Function of Concentrations
- 20-5 Batteries: Producing Electricity Through Chemical Reactions
- 20-6 Corrosion: Unwanted Voltaic Cells
- 20-7 Electrolysis: Causing Nonspontaneous Reactions to Occur
- 20-8 Industrial Electrolysis Processes

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 21. Chemistry of the Main-Group Elements I: Groups 1, 2, 13, and 14

- 21-1 Periodic Trends and Charge Density
- 21-2 Group 1: The Alkali Metals
- 21-3 Group 2: The Alkaline Earth Metals
- 21-4 Group 13: The Boron Family

21-5 Group 14: The Carbon Family Summary Integrative Example **Exercises** Integrative and Advanced Exercises Feature Problems Self-Assessment Exercises Chapter 22. Chemistry of the Main-Group Elements II: Groups 18, 17, 16, 15, and Hydrogen 22-1 Periodic Trends in Bonding 22-2 Group 18: The Noble Gases 22-3 Group 17: The Halogens 22-4 Group 16: The Oxygen Family 22-5 Group 15: The Nitrogen Family 22-6 Hydrogen: A Unique Element Summary Integrative Example **Exercises** Integrative and Advanced Exercises Feature Problems Self-Assessment Exercises

Chapter 23. The Transition Elements

- 23-1 General Properties
- 23-2 Principles of Extractive Metallurgy
- 23-3 Metallurgy of Iron and Steel
- 23-4 First-Row Transition Metal Elements: Scandium to Manganese
- 23-5 The Iron Triad: Iron, Cobalt, and Nickel
- 23-6 Group 11: Copper, Silver, and Gold
- 23-7 Group 12: Zinc, Cadmium, and Mercury
- 23-8 Lanthanides
- 23-9 High-Temperature Superconductors

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 24. Complex Ions and Coordination Compounds

- 24-1 Werners Theory of Coordination Compounds: An Overview
- 24-2 Ligands
- 24-3 Nomenclature
- 24-4 Isomerism
- 24-5 Bonding in Complex Ions: Crystal Field Theory
- 24-6 Magnetic Properties of Coordination Compounds and Crystal Field Theory
- 24-7 Color and the Colors of Complexes
- 24-8 Aspects of Complex-Ion Equilibria
- 24-9 AcidBase Reactions of Complex Ions
- 24-10 Some Kinetic Considerations
- 24-11 Applications of Coordination Chemistry

Summary

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problems

Self-Assessment Exercises

Chapter 25. Nuclear Chemistry

- 25-1 Radioactivity
- 25-2 Naturally Occurring Radioactive Isotopes
- 25-3 Nuclear Reactions and Artificially Induced Radioactivity
- 25-4 Transuranium Elements
- 25-5 Rate of Radioactive Decay
- 25-6 Energetics of Nuclear Reactions
- 25-7 Nuclear Stability
- 25-8 Nuclear Fission
- 25-9 Nuclear Fusion
- 25-10 Effect of Radiation on Matter

Summary
Integrative Example
Exercises
Integrative and Advanced Exercises
Feature Problems
Self-Assessment Exercises
Chapter 26. Structures of Organic Compounds
26-1 Organic Compounds and Structures: An Overview
26-2 Alkanes
26-3 Cycloalkanes
26-4 Stereoisomerism in Organic Compounds
26-5 Alkenes and Alkynes
26-6 Aromatic Hydrocarbons
26-7 Organic Compounds Containing Functional Groups
26-8 From Molecular Formula to Molecular Structure
Summary
Integrative Example
Exercises
Integrative and Advanced Exercises
Feature Problem
Self-Assessment Exercises
Chapter 27. Reactions of Organic Compounds
27-1 Organic Reactions: An Introduction
27-2 Introduction to Nucleophilic Substitution Reactions
27-3 Introduction to Elimination Reactions
27-4 Reactions of Alcohols
27-5 Introduction to Addition Reactions: Reactions of Alkenes
27-6 Electrophilic Aromatic Substitution
27-7 Reactions of Alkanes
27-8 Polymers and Polymerization Reactions
27-9 Synthesis of Organic Compounds
Summary

25-11 Applications of Radioisotopes

Integrative Example

Exercises

Integrative and Advanced Exercises

Feature Problem

Self-Assessment Exercises

Chapter 28. Chemistry of the Living State

28-1 Chemical Structure of Living Matter: An Overview

28-2 Lipids

28-3 Carbohydrates

28-4 Proteins

28-5 Aspects of Metabolism

28-6 Nucleic Acids

Appendices

Appendix A. Mathematical Operations

Appendix B. Some Basic Physical Concepts

Appendix C. SI Units

Appendix D. Data Tables

Appendix E. Concept Maps

Appendix F. Glossary

Appendix G. Answers to Practice Examples and Selected Exercises

Appendix H. Answers to Concept Assessment Questions

Index

The Elements

Constants, Factors, and Formulas

Locations of Important Data and Other Useful Information