

Biostatistics

for the Biological and Health Sciences

THIRD EDITION

Marc M. Triola • Mario F. Triola • Jason Roy

Symbol Table

f	frequency with which a value occurs	\hat{p}	sample proportion	
Σ	capital sigma; summation	\hat{q}	sample proportion equal to $1 - \hat{p}$	
$\sum x$	sum of the values	\overline{p}	proportion obtained by pooling two samples	
$\sum x^2$	sum of the squares of the values	\overline{q}	proportion or probability equal to $1 - \overline{p}$	
$(\Sigma x)^2$	square of the sum of all values	P(A)	probability of event A	
$\sum xy$	sum of the products of each <i>x</i> value multiplied by the corresponding <i>y</i> value	P(A B)	probability of event A, assuming event B has occurred	
n	number of values in a sample	$_{n}P_{r}$	number of permutations of n items selected	
N	number of values in a finite population; also used as the size of all samples combined	$_{n}C_{r}$	r at a time number of combinations of n items selected r at a time	
n!	n factorial	\overline{A}	complement of event A	
k	number of samples or populations or categories	H_0	null hypothesis	
\overline{X}	mean of the values in a sample	H_1	alternative hypothesis	
\overline{R}	mean of the sample ranges	α	alpha; probability of a type I error or the area of the critical region	
μ	mu; mean of all values in a population	β	beta; probability of a type II error	
S	standard deviation of a set of sample values	r	sample linear correlation coefficient	
σ	lowercase sigma; standard deviation of all values in a population	ρ	rho; population linear correlation coefficient	
s^2	variance of a set of sample values	r^2	coefficient of determination	
σ^2	variance of all values in a population	R^2	multiple coefficient of determination	
z	standard score	$r_{ m s}$	Spearman's rank correlation coefficient	
$z_{\alpha/2}$	critical value of z	b_1	point estimate of the slope of the regression line	
t $t_{\alpha/2}$	t distribution critical value of t	b_0	point estimate of the <i>y</i> -intercept of the regression line	
df	number of degrees of freedom	ŷ	predicted value of y	
F	F distribution	d	difference between two matched values	
χ^2	chi-square distribution	\overline{d}	mean of the differences d found from	
χ_R^2	right-tailed critical value of chi-square		matched sample data	
χ_L^2	left-tailed critical value of chi-square	S_d	standard deviation of the differences d found from matched sample data	
p	probability of an event or the population proportion	s _e	standard error of estimate	
q	probability or proportion equal to $1 - p$	T	rank sum; used in the Wilcoxon signed-ranks test	

Biostatistics for the Biological and Health Sciences, Global Edition

Table of Contents

\sim			
(.	\sim	10	١r
v	v	ע כ	71

Symbol Table

Title Page

Copyright Page

Dedication

About the Authors

Contents

Preface

Pearsons Commitment to Diversity, Equity, and Inclusion

Chapter 1. Introduction to Statistics

- 1-1 Statistical and Critical Thinking
- 1-2 Types of Data
- 1-3 Collecting Sample Data
- 1-4 Ethics in Statistics

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 2. Exploring Data with Tables and Graphs

- 2-1 Frequency Distributions for Organizing and Summarizing Data
- 2-2 Histograms
- 2-3 Graphs That Enlighten and Graphs That Deceive
- 2-4 Scatterplots, Correlation, and Regression

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 3. Describing, Exploring, and Comparing Data

- 3-1 Measures of Center
- 3-2 Measures of Variation
- 3-3 Measures of Relative Standing and Boxplots

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 4. Probability

- 4-1 Basic Concepts of Probability
- 4-2 Addition Rule and Multiplication Rule
- 4-3 Complements, Conditional Probability, and Bayes Theorem
- 4-4 Risks and Odds
- 4-5 Rates of Mortality, Fertility, and Morbidity
- 4-6 Counting

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 5. Discrete Probability Distributions

- 5-1 Probability Distributions
- 5-2 Binomial Probability Distributions
- 5-3 Poisson Probability Distributions

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 6. Normal Probability Distributions

- 6-1 The Standard Normal Distribution
- 6-2 Real Applications of Normal Distributions
- 6-3 Sampling Distributions and Estimators
- 6-4 The Central Limit Theorem
- 6-5 Assessing Normality
- 6-6 Normal as Approximation to Binomial

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 7. Estimating Parameters and Determining Sample Sizes

- 7-1 Estimating a Population Proportion
- 7-2 Estimating a Population Mean
- 7-3 Estimating a Population Standard Deviation or Variance
- 7-4 Bootstrapping: Using Technology for Estimates

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 8. Hypothesis Testing

- 8-1 Basics of Hypothesis Testing
- 8-2 Testing a Claim About a Proportion
- 8-3 Testing a Claim About a Mean
- 8-4 Testing a Claim About a Standard Deviation or Variance

8-5 Resampling: Using Technology for Hypothesis Testing

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 9. Inferences from Two Samples

9-1 Two Proportions

9-2 Two Means: Independent Samples

9-3 Matched Pairs

9-4 Two Variances or Standard Deviations

9-5 Resampling: Using Technology for Inferences

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 10. Correlation and Regression

10-1 Correlation

10-2 Regression

10-3 Prediction Intervals and Variation

10-4 Multiple Regression

10-5 Dummy Variables and Logistic Regression

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 11. Goodness-of-Fit and Contingency Tables

11-1 Goodness-of-Fit

11-2 Contingency Tables

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 12. Analysis of Variance

12-1 One-Way ANOVA

12-2 Two-Way ANOVA

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 13. Nonparametric Tests

13-1 Basics of Nonparametric Tests

13-2 Sign Test

13-3 Wilcoxon Signed-Ranks Test for Matched Pairs

13-4 Wilcoxon Rank-Sum Test for Two Independent Samples

13-5 Kruskal-Wallis Test for Three or More Samples

13-6 Rank Correlation

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Big (or Very Large) Data Project

Cooperative Group Activities

Chapter 14. Survival Analysis

14-1 Life Tables

14-2 Kaplan-Meier Survival Analysis

Chapter Quick Quiz

Review Exercises

Cumulative Review Exercises

Technology Project

Cooperative Group Activities

Appendix A. Tables and Formulas

Appendix B. Data Sets

Appendix C. Websites and Bibliography of Books

Appendix D. Answers to Odd-Numbered Section Exercises

Index

t Distribution: Critical t Values

Negative z Scores

Positive z Scores