

BROCK BIOLOGY OF MICROORGANISMS

SIXTEENTH EDITION

Madigan • Bender • Buckley • Sattley • Stahl

Brief Contents

UNIT 1 The Foundations of Microbiology	CHAPTER 1 CHAPTER 2 CHAPTER 3 CHAPTER 4 CHAPTER 5	The Microbial World 37 Microbial Cell Structure and Function 74 Microbial Metabolism 111 Microbial Growth and Its Control 144 Viruses and Their Multiplication 184
UNIT 2 Molecular Biology and Genetics	CHAPTER 6 CHAPTER 7 CHAPTER 8 CHAPTER 9	Molecular Information Flow and Protein Processing 201 Microbial Regulatory Systems 236 Molecular Aspects of Microbial Growth 270 Genetics of <i>Bacteria</i> and <i>Archaea</i> 297
UNIT 3 Genomics, Synthetic Biology, and Evolution	CHAPTER 10 CHAPTER 11 CHAPTER 12 CHAPTER 13	Microbial Genomics and Other Omics 328 Viral Genomics and Diversity 361 Biotechnology and Synthetic Biology 390 Microbial Evolution and Genome Dynamics 428
UNIT 4 Microbial Diversity	CHAPTER 14 CHAPTER 15 CHAPTER 16 CHAPTER 17 CHAPTER 18	Metabolic Diversity of Microorganisms 460 Ecological Diversity of <i>Bacteria</i> 514 Phylogenetic Diversity of <i>Bacteria</i> 555 Diversity of <i>Archaea</i> 592 Diversity of Microbial <i>Eukarya</i> 621
UNIT 5 Microbial Ecology and Environmental Microbiology	CHAPTER 19 CHAPTER 20 CHAPTER 21 CHAPTER 22 CHAPTER 23	Taking the Measure of Microbial Systems 648 Microbial Ecosystems 687 Nutrient Cycles 729 Microbiology of the Built Environment 754 Microbial Symbioses with Microbes, Plants, and Animals 780
UNIT 6 Microbe–Human Interactions and the Immune System	CHAPTER 24 CHAPTER 25 CHAPTER 26 CHAPTER 27 CHAPTER 28	Microbial Symbioses with Humans 819 Microbial Infection and Pathogenesis 850 Innate Immunity: Broadly Specific Host Defenses 868 Adaptive Immunity: Highly Specific Host Defenses 892 Immune Disorders and Antimicrobial Therapy 919
UNIT 7 Infectious Diseases	CHAPTER 29 CHAPTER 30 CHAPTER 31 CHAPTER 32 CHAPTER 33 CHAPTER 34	Diagnosing Infectious Diseases 943 Epidemiology and Public Health 965 Person-to-Person Bacterial and Viral Diseases 986 Vectorborne and Soilborne Bacterial and Viral Diseases 1019 Waterborne and Foodborne Bacterial and Viral Diseases 1037 Eukaryotic Pathogens: Fungi, Protozoa, and Helminths 1059

Brock Biology of Microorganisms, Global Edition

Table of Contents

(`	\sim		,	۵	r
l		()	ı	•	_	

Brief Contents

Visual Walkthrough

Authoritative. Accurate. Accessible

Making Connections Across

Concepts in Microbiology

Cutting-Edge Content

Empower Each Learner with Mastering Microbiology (I)

Empower Each Learner with Mastering Microbiology (II)

Pearson eText: A Whole New Reading Experience

Title Page

Copyright

About the Authors

Dedications

Preface

Acknowledgments

Acknowledgments for the Global Edition

Contents

ASM Recommended Curriculum Guidelines for Undergraduate Microbiology

Unit 1. The Foundations of Microbiology

1. The Microbial World

MicrobiologyNow Microbiology in Motion

- I Exploring the Microbial World
 - 1.1 Microorganisms, Tiny Titans of the Earth
 - 1.2 Structure and Activities of Microbial Cells
 - 1.3 Cell Size and Morphology
 - 1.4 An Introduction to Microbial Life
 - 1.5 Microorganisms and the Biosphere
 - 1.6 The Impact of Microorganisms on Human Society
- II Microscopy and the Origins of Microbiology

- 1.7 Light Microscopy and the Discovery of Microorganisms
- 1.8 Improving Contrast in Light Microscopy
- 1.9 Imaging Cells in Three Dimensions
- 1.10 Probing Cell Structure: Electron Microscopy

III Microbial Cultivation Expands the Horizon of Microbiology

- 1.11 Pasteur and Spontaneous Generation
- 1.12 Koch, Infectious Diseases, and Pure Cultures
- 1.13 Discovery of Microbial Diversity

IV Molecular Biology and the Unity and Diversity of Life

- 1.14 Molecular Basis of Life
- 1.15 Woese and the Tree of Life

Explore the Microbial World Tiny Cells

2. Microbial Cell Structure and Function

MicrobiologyNow Exploring the Microbial Cell

- I The Cell Envelope
 - 2.1 The Cytoplasmic Membrane
 - 2.2 Transporting Nutrients into the Cell
 - 2.3 The Cell Wall
 - 2.4 LPS: The Outer Membrane
 - 2.5 Diversity of Cell Envelope Structure

II Cell Surface Structures and Inclusions

- 2.6 Cell Surface Structures
- 2.7 Cell Inclusions
- 2.8 Endospores

III Cell Locomotion

- 2.9 Flagella, Archaella, and Swimming Motility
- 2.10 Surface Motility
- 2.11 Chemotaxis
- 2.12 Other Forms of Taxis

IV Eukaryotic Microbial Cells

- 2.13 The Nucleus and Cell Division
- 2.14 Mitochondria and Chloroplasts
- 2.15 Other Eukaryotic Cell Structures

3. Microbial Metabolism

MicrobiologyNow Life Begins with Metabolism

- I Fundamentals of Metabolism
 - 3.1 Defining the Requirements for Life
 - 3.2 Electron Transfer Reactions
 - 3.3 Calculating Changes in Free Energy
 - 3.4 Cellular Energy Conservation

- 3.5 Catalysis and Enzymes
- II Catabolism: Chemoorganotrophs
 - 3.6 Glycolysis, the Citric Acid Cycle, and the Glyoxylate Cycle
 - 3.7 Principles of Fermentation
 - 3.8 Principles of Respiration: Electron Carriers
 - 3.9 Principles of Respiration: Generating a Proton Motive Force
- III Catabolism: Electron Transport and Metabolic Diversity
 - 3.10 Anaerobic Respiration and Metabolic Modularity
 - 3.11 Chemolithotrophy and Phototrophy
- IV Biosynthesis
 - 3.12 Autotrophy and Nitrogen Fixation
 - 3.13 Sugars and Polysaccharides
 - 3.14 Amino Acids and Nucleotides
 - 3.15 Fatty Acids and Lipids

4. Microbial Growth and Its Control

MicrobiologyNow Growing Their Own Way

- I Culturing Microbes and Measuring Their Growth
 - 4.1 Feeding the Microbe: Cell Nutrition
 - 4.2 Growth Media and Laboratory Culture
 - 4.3 Microscopic Counts of Microbial Cell Numbers
 - 4.4 Viable Counting of Microbial Cell Numbers
 - 4.5 Turbidimetric Measures of Microbial Cell Numbers
- II Dynamics of Microbial Growth
 - 4.6 Binary Fission and the Microbial Growth Cycle
 - 4.7 Quantitative Aspects of Microbial Growth
 - 4.8 Continuous Culture
 - 4.9 Biofilm Growth
 - 4.10 Alternatives to Binary Fission
- III Environmental Effects on Growth: Temperature
 - 4.11 Temperature Classes of Microorganisms
 - 4.12 Microbial Life in the Cold
 - 4.13 Microbial Life at High Temperatures
- IV Environmental Effects on Growth: pH, Osmolarity, and Oxygen
 - 4.14 Effects of pH on Microbial Growth
 - 4.15 Osmolarity and Microbial Growth
 - 4.16 Oxygen and Microbial Growth
- V Controlling Microbial Growth
 - 4.17 General Principles and Microbial Growth Control by Heat
 - 4.18 Other Physical Control Methods: Radiation and Filtration
 - 4.19 Chemical Control of Microbial Growth

5. Viruses and Their Multiplication

MicrobiologyNow When Antibiotics Fail, Bacteriophage Therapy to the Rescue

- I The Nature of Viruses
 - 5.1 What Is a Virus?
 - 5.2 Structure of the Virion
 - 5.3 Culturing, Detecting, and Counting Viruses
- II Overview of the Viral Replication Cycle
 - 5.4 Steps in the Replication Cycle
 - 5.5 Bacteriophage T4: A Model Lytic Virus
 - 5.6 Temperate Bacteriophages and Lysogeny
 - 5.7 An Overview of Viruses of Eukaryotes

Unit 2. Molecular Biology and Genetics

6. Molecular Information Flow and Protein Processing

MicrobiologyNow Injectisomes: Salmonellas Mode of Attack

- I Molecular Biology and Genetic Elements
 - 6.1 DNA and Genetic Information Flow
 - 6.2 Genetic Elements: Chromosomes and Plasmids
- II Copying the Genetic Blueprint: DNA Replication
 - 6.3 Templates, Enzymes, and the Replication Fork
 - 6.4 Bidirectional Replication, the Replisome, and Proofreading
- III RNA Synthesis: Transcription
 - 6.5 Transcription in Bacteria
 - 6.6 Transcription in Archaea and Eukarya
- IV Protein Synthesis: Translation
 - 6.7 Amino Acids, Polypeptides, and Proteins
 - 6.8 Transfer RNA
 - 6.9 Translation and the Genetic Code
 - 6.10 The Mechanism of Protein Synthesis
- V Protein Processing, Secretion, and Targeting
 - 6.11 Assisted Protein Folding and Chaperones
 - 6.12 Protein Secretion: The Sec and Tat Systems
 - 6.13 Protein Secretion: Gram-Negative Systems

7. Microbial Regulatory Systems

MicrobiologyNow As Bacterial Cells Chatter, Viruses Eavesdrop

- I DNA-Binding Proteins and Transcriptional Regulation
 - 7.1 DNA-Binding Proteins
 - 7.2 Transcription Factors and Effectors
 - 7.3 Repression and Activation
 - 7.4 Transcription Controls in Archaea

II Sensing and Signal Transduction

- 7.5 Two-Component Regulatory Systems
- 7.6 Regulation of Chemotaxis
- 7.7 Cell-to-Cell Signaling

III Global Control

- 7.8 The lac Operon
- 7.9 Stringent and General Stress Responses
- 7.10 The Phosphate (Pho) Regulon
- 7.11 The Heat Shock Response

IV RNA-Based Regulation

- 7.12 Regulatory RNAs
- 7.13 Riboswitches
- 7.14 Attenuation

V Regulation of Enzymes and Other Proteins

- 7.15 Feedback Inhibition
- 7.16 Post-Translational Regulation

8. Molecular Aspects of Microbial Growth

MicrobiologyNow Membrane Vesicles: Nano Vehicles Transporting Important Cargo

I Bacterial Cell Division

- 8.1 Visualizing Molecular Growth
- 8.2 Chromosome Replication and Segregation
- 8.3 Cell Division and Fts Proteins
- 8.4 Determinants of Cell Morphology
- 8.5 Peptidoglycan Biosynthesis

II Regulation of Development in Model Bacteria

- 8.6 Regulation of Endospore Formation
- 8.7 Regulation of Endospore Germination
- 8.8 Caulobacter Differentiation
- 8.9 Heterocyst Formation in Anabaena
- 8.10 Biofilm Formation

III Antibiotics and Microbial Growth

- 8.11 Antibiotic Targets and Antibiotic Resistance
- 8.12 Persistence and Dormancy

9. Genetics of Bacteria and Archaea

MicrobiologyNow Live Cell Imaging Captures Bacterial Promiscuity

- I Mutation
 - 9.1 Mutations and Mutants
 - 9.2 Molecular Basis of Mutation
 - 9.3 Reversions and Mutation Rates
 - 9.4 Mutagenesis

II Gene Transfer in Bacteria

- 9.5 Genetic Recombination
- 9.6 Transformation
- 9.7 Transduction
- 9.8 Conjugation
- 9.9 The Formation of Hfr Strains and Chromosome Mobilization

III Gene Transfer in Archaea and Other Genetic Events

- 9.10 Horizontal Gene Transfer in Archaea
- 9.11 Mobile DNA: Transposable Elements
- 9.12 Preserving Genomic Integrity and CRISPR

Unit 3. Genomics, Synthetic Biology, and Evolution

10. Microbial Genomics and Other Omics

MicrobiologyNow Omics Tools Unravel Mysteries of Fettuccine Rocks

I Genomics

- 10.1 Introduction to Genomics
- 10.2 Sequencing and Annotating Genomes
- 10.3 Genome Size and Gene Content in Bacteria and Archaea
- 10.4 Organelle and Eukaryotic Microbial Genomes

II Functional Omics

- 10.5 Functional Genomics
- 10.6 High-Throughput Functional Gene Analysis: Tn-Seq
- 10.7 Metagenomics
- 10.8 Gene Chips and Transcriptomics
- 10.9 Proteomics and the Interactome
- 10.10 Metabolomics

III Systems Biology

- 10.11 Single-Cell Genomics
- 10.12 Integrating Mycobacterium tuberculosis Omics
- 10.13 Systems Biology and Human Health

Explore the Microbial World DNA Sequencing in the Palm of Your Hand

11. Viral Genomics and Diversity

MicrobiologyNow Bacteriophages Mimicking EukaryotesDiscovery of a Phage-Encoded Nucleus and Spindle

I Viral Genomes and Classification

- 11.1 Size and Structure of Viral Genomes
- 11.2 Viral Taxonomy and Phylogeny

II DNA Viruses

- 11.3 Single-Stranded DNA Bacteriophages: X174 and M13
- 11.4 Double-Stranded DNA Bacteriophages: T4, T7, and Lambda
- 11.5 Viruses of Archaea

- 11.6 Uniquely Replicating DNA Animal Viruses
- 11.7 DNA Tumor Viruses

III RNA Viruses

- 11.8 Positive-Strand RNA Viruses
- 11.9 Negative-Strand RNA Animal Viruses
- 11.10 Double-Stranded RNA Viruses
- 11.11 Viruses That Use Reverse Transcriptase

IV Subviral Agents

- 11.12 Viroids
- 11.13 Prions

12. Biotechnology and Synthetic Biology

MicrobiologyNow An Ingestible Biosensor: Using Bacteria to Monitor Gastrointestinal Health

- I Tools of the Genetic Engineer
 - 12.1 Manipulating DNA: PCR and Nucleic Acid Hybridization
 - 12.2 Molecular Cloning
 - 12.3 Expressing Foreign Genes in Bacteria
 - 12.4 Molecular Methods for Mutagenesis
 - 12.5 Reporter Genes and Gene Fusions

II Making Products from Genetically Engineered Microbes: Biotechnology

- 12.6 Somatotropin and Other Mammalian Proteins
- 12.7 Transgenic Organisms in Agriculture and Aquaculture
- 12.8 Engineered Vaccines and Therapeutic Agents
- 12.9 Mining Genomes and Engineering Pathways
- 12.10 Engineering Biofuels

III Synthetic Biology and Genome Editing

- 12.11 Synthetic Metabolic Pathways, Biosensors, and Genetic Circuits
- 12.12 Synthetic Cells
- 12.13 Genome Editing and CRISPRs
- 12.14 Biocontainment of Genetically Modified Organisms

13. Microbial Evolution and Genome Dynamics

MicrobiologyNow Exploring Viral Genesis

- I Early Earth and the Origin and Diversification of Life
 - 13.1 Formation and Early History of Earth
 - 13.2 Photosynthesis and the Oxidation of Earth
 - 13.3 Living Fossils: DNA Records the History of Life
 - 13.4 Endosymbiotic Origin of Eukaryotes
 - 13.5 Viral Evolution

II Mechanisms of Microbial Evolution

- 13.6 The Evolutionary Process
- 13.7 Experimental Evolution

- 13.8 Gene Families, Duplications, and Deletions
- 13.9 Horizontal Gene Transfer
- 13.10 The Evolution of Microbial Genomes
- III Microbial Phylogeny and Systematics
 - 13.11 Molecular Phylogeny: Making Sense of Molecular Sequences
 - 13.12 Microbial Systematics

Unit 4. Microbial Diversity

14. Metabolic Diversity of Microorganisms

MicrobiologyNow Ferreting Out the Peculiar Life of Iron Bacteria

- I Introduction to Metabolic Diversity
 - 14.1 Foundational Principles of Metabolic Diversity: Energy and Redox
 - 14.2 Autotrophic Pathways

II Phototrophy

- 14.3 Photosynthesis and Chlorophylls
- 14.4 Carotenoids and Phycobilins
- 14.5 Anoxygenic Photosynthesis
- 14.6 Oxygenic Photosynthesis

III Respiratory Processes Defined by Electron Donor

- 14.7 Oxidation of Sulfur Compounds
- 14.8 Iron (Fe2+) Oxidation
- 14.9 Nitrification
- 14.10 Anaerobic Ammonia Oxidation (Anammox)

IV Respiratory Processes Defined by Electron Acceptor

- 14.11 Nitrate Reduction and Denitrification
- 14.12 Sulfate and Sulfur Reduction
- 14.13 Other Electron Acceptors

V One-Carbon (C1) Metabolism

- 14.14 Acetogenesis
- 14.15 Methanogenesis
- 14.16 Methanotrophy

VI Fermentation

- 14.17 Energetic and Redox Considerations
- 14.18 Lactic and Mixed-Acid Fermentations
- 14.19 Fermentations of Obligate Anaerobes
- 14.20 Secondary Fermentations
- 14.21 Fermentations That Lack Substrate-Level Phosphorylation
- 14.22 Syntrophy

VII Hydrocarbon Metabolism

- 14.23 Aerobic Hydrocarbon Metabolism
- 14.24 Anaerobic Hydrocarbon Metabolism

15. Ecological Diversity of Bacteria

MicrobiologyNow Cyanobacterial Diversity and Environmental Change

- I Ecological Diversity Among Microorganisms
 - 15.1 Making Sense of Microbial Diversity
- II Ecological Diversity of Phototrophic Bacteria
 - 15.2 Overview of Phototrophic Bacteria
 - 15.3 Cyanobacteria
 - 15.4 Purple Sulfur Bacteria
 - 15.5 Purple Nonsulfur Bacteria and Aerobic Anoxygenic Phototrophs
 - 15.6 Green Sulfur Bacteria
 - 15.7 Green Nonsulfur Bacteria
 - 15.8 Other Phototrophic Bacteria

III Diversity of Bacteria Defined by Metabolic Traits

- 15.9 Diversity of Nitrogen Fixers
- 15.10 Diversity of Nitrifiers and Denitrifiers
- 15.11 Dissimilative Sulfur- and Sulfate-Reducers
- 15.12 Dissimilative Sulfur-Oxidizers
- 15.13 Dissimilative Iron-Reducers
- 15.14 Dissimilative Iron-Oxidizers
- 15.15 Methanotrophs and Methylotrophs

IV Morphologically and Ecologically Distinctive Bacteria

- 15.16 Microbial Predators
- 15.17 Spirochetes
- 15.18 Budding and Prosthecate/Stalked Bacteria
- 15.19 Sheathed Bacteria
- 15.20 Magnetic Microbes

16. Phylogenetic Diversity of Bacteria

MicrobiologyNow Bacterial Diversity and Human Health

- I Proteobacteria
 - 16.1 Alphaproteobacteria
 - 16.2 Betaproteobacteria
 - 16.3 Gammaproteobacteria: Enterobacteriales
 - 16.4 Gammaproteobacteria: Pseudomonadales and Vibrionales
 - 16.5 Deltaproteobacteria and Epsilonproteobacteria

Il Firmicutes, Tenericutes, and Actinobacteria

- 16.6 Firmicutes: Lactobacillales
- 16.7 Firmicutes: Nonsporulating Bacillales and Clostridiales
- 16.8 Firmicutes: Sporulating Bacillales and Clostridiales
- 16.9 Tenericutes: The Mycoplasmas
- 16.10 Actinobacteria: Coryneform and Propionic Acid Bacteria

- 16.11 Actinobacteria: Mycobacterium
- 16.12 Filamentous Actinobacteria: Streptomyces and Relatives

III Bacteroidetes

- 16.13 Bacteroidales
- 16.14 Cytophagales, Flavobacteriales, and Sphingobacteriales

IV Chlamydiae, Planctomycetes, and Verrucomicrobia

- 16.15 Chlamydiae
- 16.16 Planctomycetes
- 16.17 Verrucomicrobia

V Hyperthermophilic Bacteria

- 16.18 Thermotogae and Thermodesulfobacteria
- 16.19 Aquificae

VI Other Bacteria

- 16.20 DeinococcusThermus
- 16.21 Acidobacteria and Nitrospirae
- 16.22 Other Notable Phyla of Bacteria

17. Diversity of Archaea

MicrobiologyNow Methanogens and Global Climate Change

I Euryarchaeota

- 17.1 Extremely Halophilic Archaea
- 17.2 Methanogenic Archaea
- 17.3 Thermoplasmatales
- 17.4 Thermococcales and Archaeoglobales

II Thaumarchaeota and Cryptic Archaeal Phyla

- 17.5 Thaumarchaeota and Nitrification in Archaea
- 17.6 Nanoarchaeota and the Hospitable Fireball
- 17.7 Korarchaeota, the Secret Filament
- 17.8 Other Cryptic Archaeal Phyla

III Crenarchaeota

- 17.9 Habitats and Energy Metabolism of Crenarchaeota
- 17.10 Crenarchaeota from Terrestrial Volcanic Habitats
- 17.11 Crenarchaeota from Submarine Volcanic Habitats

IV Evolution and Life at High Temperature

- 17.12 An Upper Temperature Limit for Microbial Life
- 17.13 Molecular Adaptations to Life at High Temperature
- 17.14 Hyperthermophilic Archaea, H2, and Microbial Evolution

18. Diversity of Microbial Eukarya

MicrobiologyNow Coccolithophores, Engineers of Global Climate

- I Organelles and Phylogeny of Microbial Eukarya
 - 18.1 Endosymbioses and the Eukaryotic Cell

18.2 Phylogenetic Lineages of Eukarya

II Protists

- 18.3 Excavates
- 18.4 Alveolata
- 18.5 Stramenopiles
- 18.6 Rhizaria
- 18.7 Haptophytes
- 18.8 Amoebozoa

III Fungi

- 18.9 Fungal Physiology, Structure, and Symbioses
- 18.10 Fungal Reproduction and Phylogeny
- 18.11 Microsporidia and Chytridiomycota
- 18.12 Mucoromycota and Glomeromycota
- 18.13 Ascomycota
- 18.14 Basidiomycota

IV Archaeplastida

- 18.15 Red Algae
- 18.16 Green Algae

Unit 5. Microbial Ecology and Environmental Microbiology

19. Taking the Measure of Microbial Systems

MicrobiologyNow Touring Microbial Biogeography Using Combinatorial Imaging

- I Culture-Dependent Analyses of Microbial Communities
 - 19.1 Enrichment Culture Microbiology
 - 19.2 Classical Procedures for Isolating Microbes
 - 19.3 Selective Single-Cell Isolation: Laser Tweezers, Flow Cytometry, Microfluidics, and High-Throughput Methods
- II Culture-Independent Microscopic Analyses of Microbial Communities
 - 19.4 General Staining Methods
 - 19.5 Microscopic Specificity: Fluorescence In Situ Hybridization (FISH)
- III Culture-Independent Molecular Analyses of Microbial Communities
 - 19.6 PCR Methods of Microbial Community Analysis
 - 19.7 Microarrays for Analysis of Microbial Phylogenetic and Functional Diversity
 - 19.8 Environmental Multi-omics: Integration of Genomics, Transcriptomics, Proteomics, and Metabolomics

IV Measuring Microbial Activities in Nature

- 19.9 Chemical Assays, Radioisotopic Methods, Microsensors, and Nanosensors
- 19.10 Stable Isotopes and Stable Isotope Probing
- 19.11 Linking Functions to Specific Organisms
- 19.12 Linking Genes and Cellular Properties to Individual Cells

20. Microbial Ecosystems

MicrobiologyNow Living on Fumes

I Microbial Ecology

- 20.1 General Ecological Concepts
- 20.2 Ecosystem Service: Biogeochemistry and Nutrient Cycles

II The Microbial Environment

- 20.3 Environments and Microenvironments
- 20.4 Surfaces and Biofilms
- 20.5 Microbial Mats

III Terrestrial Environments

- 20.6 Soils: General Properties
- 20.7 Prokaryotic Diversity in Soils
- 20.8 The Terrestrial Subsurface

IV Aquatic Environments

- 20.9 Freshwaters
- 20.10 Oxygen Relationships in the Marine Environment
- 20.11 Major Marine Phototrophs
- 20.12 Pelagic Bacteria and Archaea
- 20.13 Pelagic Marine Viruses
- 20.14 The Deep Sea
- 20.15 Deep-Sea Sediments
- 20.16 Hydrothermal Vents

21. Nutrient Cycles

MicrobiologyNow An Uncertain Future for Coral Reef Ecosystems

- I Carbon, Nitrogen, and Sulfur Cycles
 - 21.1 The Carbon Cycle
 - 21.2 Syntrophy and Methanogenesis
 - 21.3 The Nitrogen Cycle
 - 21.4 The Sulfur Cycle

II Other Nutrient Cycles

- 21.5 The Iron and Manganese Cycles: Reductive Activities
- 21.6 The Iron and Manganese Cycles: Oxidative Activities
- 21.7 The Phosphorus, Calcium, and Silicon Cycles

III Humans and Nutrient Cycling

- 21.8 Mercury Transformations
- 21.9 Human Impacts on the Carbon and Nitrogen Cycles

Explore the Microbial World Solving the Marine Methane Paradox

22. Microbiology of the Built Environment

MicrobiologyNow Sending Microbes to Clean Up after Polluters

- I Mineral Recovery and Acid Mine Drainage
 - 22.1 Mining with Microorganisms
 - 22.2 Acid Mine Drainage
- II Bioremediation

- 22.3 Bioremediation of Uranium-Contaminated Environments
- 22.4 Bioremediation of Organic Pollutants: Hydrocarbons
- 22.5 Bioremediation and Microbial Degradation of Major Chemical Pollutants: Chlorinated Organics and Plastics

III Wastewater and Drinking Water Treatment

- 22.6 Primary and Secondary Wastewater Treatment
- 22.7 Tertiary Wastewater Treatment: Further Removal of Phosphorus and Nitrogen
- 22.8 Sludge Processing and Contaminants of Emerging Concern
- 22.9 Drinking Water Purification and Stabilization
- 22.10 Water Distribution Systems

IV Indoor Microbiology and Microbially Influenced Corrosion

- 22.11 The Microbiology of Homes and Public Spaces
- 22.12 Microbially Influenced Corrosion of Metals
- 22.13 Biodeterioration of Stone and Concrete

23. Microbial Symbioses with Microbes, Plants, and Animals

MicrobiologyNow Coral Fluorescence Provides the Guiding Light for Their Symbiotic Algae

I Symbioses Between Microorganisms

- 23.1 Lichens
- 23.2 Chlorochromatium aggregatum
- 23.3 Methanotrophic Consortia: Direct Interspecies Electron Transfer

II Plants as Microbial Habitats

- 23.4 The LegumeRoot Nodule Symbiosis
- 23.5 Mycorrhizae
- 23.6 Agrobacterium and Crown Gall Disease

III Insects as Microbial Habitats

- 23.7 Heritable Symbionts of Insects
- 23.8 Defensive Symbioses
- 23.9 Termites

IV Other Invertebrates as Microbial Habitats

- 23.10 Bioluminescent Symbionts and the Squid Symbiosis
- 23.11 Marine Invertebrates at Hydrothermal Vents and Cold Seeps
- 23.12 Entomopathogenic Nematodes
- 23.13 Reef-Building Corals

V Mammalian Gut Systems as Microbial Habitats

- 23.14 Alternative Mammalian Gut Systems
- 23.15 The Rumen and Rumen Activities
- 23.16 Rumen Microbes and Their Dynamic Relationships

Explore the Microbial World Combating Mosquito-Borne Viral Diseases with an Insect Symbiont

Unit 6. MicrobeHuman Interactions and the Immune System

24. Microbial Symbioses with Humans

MicrobiologyNow One of the Most Abundant Viruses on Earth Discovered First in the Human Viral

Microbiome

	ı	Structure and Function	of the Healthy	Adult Gastrointestinal	and Oral Microbiomes
--	---	------------------------	----------------	------------------------	----------------------

- 24.1 Overview of the Human Microbiome
- 24.2 Gastrointestinal Microbiota
- 24.3 Oral Cavity and Airways

II Urogenital Tract and Skin Microbiomes and the Human Viral Microbiome

- 24.4 Urogenital Tracts and Their Microbes
- 24.5 The Skin and Its Microbes
- 24.6 The Human Virome

III From Birth to Death: Development of the Human Microbiome

- 24.7 Human Study Groups and Animal Models
- 24.8 Colonization, Succession, and Stability of the Gut Microbiota

IV Disorders Attributed to the Human Microbiome

- 24.9 Syndromes Linked to the Gut Microbiota
- 24.10 Syndromes Linked to the Oral, Skin, and Vaginal Microbiota

V Modulation of the Human Microbiome

- 24.11 Antibiotics and the Human Microbiome
- 24.12 Probiotics, Prebiotics, and Synbiotics

Explore the Microbial World The GutBrain Axis

25. Microbial Infection and Pathogenesis

MicrobiologyNow Killing Pathogens on Contact

- I HumanPathogen Interactions
 - 25.1 Microbial Adherence
 - 25.2 Colonization and Invasion
 - 25.3 Pathogenicity, Virulence, and Virulence Attenuation
 - 25.4 Genetics of Virulence and the Compromised Host

II Enzymes and Toxins of Pathogenesis

- 25.5 Enzymes as Virulence Factors
- 25.6 AB-Type Exotoxins
- 25.7 Cytolytic and Superantigen Exotoxins
- 25.8 Endotoxins

26. Innate Immunity: Broadly Specific Host Defenses

MicrobiologyNow Periodontal Disease and Alzheimers: Evidence for Causation?

- I Fundamentals of Host Defense
 - 26.1 Basic Properties of the Immune System
 - 26.2 Barriers to Pathogen Invasion

II Cells and Organs of the Immune System

- 26.3 The Blood and Lymphatic Systems
- 26.4 Leukocyte Production and Diversity
- III Phagocyte Response Mechanisms

- 26.5 Pathogen Challenge and Phagocyte Recruitment
- 26.6 Pathogen Recognition and Phagocyte Signal Transduction
- 26.7 Phagocytosis and Phagocyte Inhibition

IV Other Innate Host Defenses

- 26.8 Inflammation and Fever
- 26.9 The Complement System
- 26.10 Innate Defenses Against Viruses

Explore the Microbial World Pattern Recognition Receptors of Hydrothermal Vent Tube Worms Facilitate Endosymbiosis

27. Adaptive Immunity: Highly Specific Host Defenses

MicrobiologyNow Controlling HIV through Public T Cell Receptors on CD4 T Cells

- I Principles of Adaptive Immunity
 - 27.1 Specificity, Memory, Selection Processes, and Tolerance
 - 27.2 Immunogens and Classes of Immunity
- II Antibodies
 - 27.3 Antibody Production and Structural Diversity
 - 27.4 Antigen Binding and the Genetics of Antibody Diversity
- III The Major Histocompatibility Complex (MHC)
 - 27.5 MHC Proteins and Their Functions
 - 27.6 MHC Polymorphism, Polygeny, and Peptide Binding
- IV T Cells and Their Receptors
 - 27.7 T Cell Receptors: Proteins, Genes, and Diversity
 - 27.8 T Cell Subsets and Their Functions

28. Immune Disorders and Antimicrobial Therapy

MicrobiologyNow Preventing Autoimmunity with . . . Parasitic Worms?

- I Disorders and Deficiencies of the Immune System
 - 28.1 Allergy, Hypersensitivity, and Autoimmunity
 - 28.2 Superantigens and Immunodeficiency
- II Vaccines and Immunotherapy
 - 28.3 Vaccination Against Infectious Diseases
 - 28.4 Immunotherapy
- III Drug Treatments for Infectious Diseases
 - 28.5 Antibacterial Drugs
 - 28.6 Antimicrobial Drugs That Target Nonbacterial Pathogens
 - 28.7 Antimicrobial Drug Resistance and New Treatment Strategies

Unit 7. Infectious Diseases

29. Diagnosing Infectious Diseases

MicrobiologyNow Shedding New Light on Diagnosing Tuberculosis

I Microbiology and the Healthcare Environment

- 29.1 The Clinical Microbiology Laboratory
- 29.2 Healthcare-Associated Infections

II Isolating and Characterizing Infectious Microorganisms

- 29.3 Workflow in the Clinical Laboratory
- 29.4 Choosing the Right Treatment

III Immunological and Molecular Tools for Disease Diagnosis

- 29.5 Immunoassays and Disease
- 29.6 Precipitation, Agglutination, and Immunofluorescence
- 29.7 Enzyme Immunoassays, Rapid Tests, and Immunoblots
- 29.8 Nucleic AcidBased Clinical Assays

Explore the Microbial World MRSAA Formidable Clinical Challenge

30. Epidemiology and Public Health

MicrobiologyNow A New Urgent Threat Is Emerging in Public Health Microbiology

- I Principles of Epidemiology
 - 30.1 The Language of Epidemiology
 - 30.2 The Host Community
 - 30.3 Infectious Disease Transmission and Reservoirs
 - 30.4 Characteristics of Disease Epidemics

II Public and Global Health

- 30.5 Public Health and Infectious Disease
- 30.6 Global Health Comparisons

III Emerging Infectious Diseases, Pandemics, and Other Threats

- 30.7 Emerging and Reemerging Infectious Diseases
- 30.8 Examples of Pandemics: HIV/AIDS, Cholera, and Influenza
- 30.9 Public Health Threats from Microbial Weapons

31. Person-to-Person Bacterial and Viral Diseases

MicrobiologyNow Reversing Antibiotic Resistance in a Recalcitrant Pathogen

- I Airborne Bacterial Diseases
 - 31.1 Airborne Pathogens
 - 31.2 Streptococcal Syndromes
 - 31.3 Diphtheria and Pertussis
 - 31.4 Tuberculosis and Leprosy
 - 31.5 Meningitis and Meningococcemia

II Airborne Viral Diseases

- 31.6 MMR and Varicella-Zoster Infections
- 31.7 The Common Cold
- 31.8 Influenza

III Direct-Contact Bacterial and Viral Diseases

- 31.9 Staphylococcus aureus Infections
- 31.10 Helicobacter pylori and Gastric Diseases

- 31.11 Hepatitis
- 31.12 Ebola: A Deadly Threat

IV Sexually Transmitted Infections

- 31.13 Gonorrhea, Syphilis, and Chlamydia
- 31.14 Herpes Simplex Viruses (HSV) and Human Papillomavirus (HPV)
- 31.15 Human Immunodeficiency Virus (HIV) and AIDS

32. Vectorborne and Soilborne Bacterial and Viral Diseases

MicrobiologyNow The Historical Emergence of an Ancient and Deadly Pathogen

- I Animal-Transmitted Viral Diseases
 - 32.1 Rabies Virus and Rabies
 - 32.2 Hantavirus and Hantavirus Syndromes

II Arthropod-Transmitted Bacterial and Viral Diseases

- 32.3 Rickettsial Diseases
- 32.4 Lyme Disease and Borrelia
- 32.5 Yellow Fever, Dengue Fever, Chikungunya, and Zika
- 32.6 West Nile Fever
- 32.7 Plague

III Soilborne Bacterial Diseases

- 32.8 Anthrax
- 32.9 Tetanus and Gas Gangrene

33. Waterborne and Foodborne Bacterial and Viral Diseases

MicrobiologyNow Reverse Zoonosis in the Southern Ocean

- I Water as a Disease Vehicle
 - 33.1 Agents and Sources of Waterborne Diseases
 - 33.2 Public Health and Water Quality
- II Waterborne Diseases
 - 33.3 Vibrio cholerae and Cholera
 - 33.4 Legionellosis
 - 33.5 Typhoid Fever and Norovirus Illness

III Food as a Disease Vehicle

- 33.6 Food Spoilage and Food Preservation
- 33.7 Foodborne Diseases and Food Epidemiology

IV Food Poisoning

- 33.8 Staphylococcal Food Poisoning
- 33.9 Clostridial Food Poisoning

V Food Infection

- 33.10 Salmonellosis
- 33.11 Pathogenic Escherichia coli
- 33.12 Campylobacter
- 33.13 Listeriosis

33.14 Other Foodborne Infectious Diseases

34. Eukaryotic Pathogens: Fungi, Protozoa, and Helminths

MicrobiologyNow A Silver Bullet to Kill Brain-Eating Amoebae?

- I Fungal Infections
 - 34.1 Pathogenic Fungi and Classes of Infection
 - 34.2 Fungal Diseases: Mycoses
- II Visceral Parasitic Infections
 - 34.3 Amoebae and Ciliates: Entamoeba, Naegleria, and Balantidium
 - 34.4 Other Visceral Parasites: Giardia, Trichomonas, Cryptosporidium, Toxoplasma, and Cyclospora
- III Blood and Tissue Parasitic Infections
 - 34.5 Plasmodium and Malaria
 - 34.6 Leishmaniasis, Trypanosomiasis, and Chagas Disease
 - 34.7 Parasitic Helminths: Schistosomiasis and Filariases

Photo Credits

Glossary Terms

Index

Phylogeny of Bacteria

Phylogeny of Archaea

