

Conventional Current

Tenth Edition Global Edition

Thomas L. Floyd

David M. Buchla

Principles of Electric Circuits: Conventional Current, Global Edition

Table of Contents

_					
(٠,	1		\sim	r
l	,(.)	v	H	

Title Page

Copyright

Dedication

Preface

Contents

1. Quantities and Units

- 11 Units of Measurement
- 12 Scientific Notation
- 13 Engineering Notation and Metric Prefixes
- 14 Metric Unit Conversions
- 15 Measured Numbers

2. Voltage, Current, and Resistance

- 21 Atomic Structure
- 22 Electrical Charge
- 23 Voltage
- 24 Current
- 25 Resistance
- 26 The Electric Circuit
- 27 Basic Circuit Measurements
- 28 Electrical Safety

Application Activity

3. Ohms Law

- 31 The Relationship of Current, Voltage, and Resistance
- 32 Current Calculations
- 33 Voltage Calculations
- 34 Resistance Calculations

35 Introduction to Troubleshooting

Application Activity

4. Energy and Power

- 41 Energy and Power
- 42 Power in an Electric Circuit
- 43 Resistor Power Ratings
- 44 Energy Conversion and Voltage Drop in Resistance
- 45 Power Supplies and Batteries

Application Activity

5. Series Circuits

- 51 Resistors in Series
- 52 Total Series Resistance
- 53 Current in a Series Circuit
- 54 Application of Ohms Law
- 55 Voltage Sources in Series
- 56 Kirchhoffs Voltage Law
- 57 Voltage Dividers
- 58 Power in Series Circuits
- 59 Voltage Measurements
- 510 Troubleshooting

Application Activity

6. Parallel Circuits

- 61 Resistors in Parallel
- 62 Voltage in a Parallel Circuit
- 63 Kirchhoffs Current Law
- 64 Total Parallel Resistance
- 65 Application of Ohms Law
- 66 Current Sources in Parallel
- 67 Current Dividers
- 68 Power in Parallel Circuits
- 69 Parallel Circuit Applications
- 610 Troubleshooting

Application Activity

7. Series-Parallel Circuits

- 71 Identifying Series-Parallel Relationships
- 72 Analysis of Series-Parallel Resistive Circuits
- 73 Voltage Dividers with Resistive Loads
- 74 Loading Effect of a Voltmeter
- 75 Ladder Networks
- 76 The Wheatstone Bridge
- 77 Troubleshooting
- **Application Activity**

8. Circuit Theorems and Conversions

- 81 The DC Voltage Source
- 82 The Current Source
- 83 Source Conversions
- 84 The Superposition Theorem
- 85 Thevenins Theorem
- 86 Nortons Theorem
- 87 Maximum Power Transfer Theorem
- 8-8 Delta-to-Wye (-to-Y) and Wye-to-Delta (Y-to-) Conversions
- **Application Activity**

9. Branch, Loop, and Node Analyses

- 91 Simultaneous Equations in Circuit Analysis
- 92 Branch Current Method
- 93 Loop Current Method
- 94 Node Voltage Method
- **Application Activity**

10. Magnetism and Electromagnetism

- 101 The Magnetic Field
- 102 Electromagnetism
- 103 Electromagnetic Devices
- 104 Magnetic Hysteresis
- 105 Electromagnetic Induction
- 106 The DC Generator
- 107 The DC Motor

Application Activity

11. Introduction to Alternating Current and Voltage

- 111 The Sinusoidal Waveform
- 112 Sinusoidal Voltage and Current Values
- 113 Angular Measurement of a Sine Wave
- 114 The Sine Wave Formula
- 115 Introduction to Phasors
- 116 Analysis of AC Circuits
- 117 The Alternator (AC Generator)
- 118 The AC Motor
- 119 Nonsinusoidal Waveforms
- 1110 The Oscilloscope

Application Activity

12. Capacitors

- 121 The Basic Capacitor
- 122 Types of Capacitors
- 123 Series Capacitors
- 124 Parallel Capacitors
- 125 Capacitors in DC Circuits
- 126 Capacitors in AC Circuits
- 127 Capacitor Applications
- 128 Switched-Capacitor Circuits

Application Activity

13. RC Circuits

131 The Complex Number System

Part 1. Series Circuits

- 132 Sinusoidal Response of Series RC Circuits
- 133 Impedance of Series RC Circuits
- 134 Analysis of Series RC Circuits

Part 2. Parallel Circuits

- 135 Impedance and Admittance of Parallel RC Circuits
- 136 Analysis of Parallel RC Circuits
- Part 3. Series-Parallel Circuits

137 Analysis of Series-Parallel RC Circuits

Part 4. Special Topics

138 Power in RC Circuits

139 Basic Applications

1310 Troubleshooting

Application Activity

14. Inductors

141 The Basic Inductor

142 Types of Inductors

143 Series and Parallel Inductors

144 Inductors in DC Circuits

145 Inductors in AC Circuits

146 Inductor Applications

Application Activity

15. RL Circuits

Part 1. Series Circuits

151 Sinusoidal Response of Series RL Circuits

152 Impedance of Series RL Circuits

153 Analysis of Series RL Circuits

Part 2. Parallel Circuits

154 Impedance and Admittance of Parallel RL Circuits

155 Analysis of Parallel RL Circuits

Part 3. Series-Parallel Circuits

156 Analysis of Series-Parallel RL Circuits

Part 4. Special Topics

157 Power in RL Circuits

158 Basic Applications

159 Troubleshooting

Application Activity

16. Transformers

161 Mutual Inductance

162 The Basic Transformer

163 Step-Up and Step-Down Transformers

164 Loading the Secondary

1	6	5	Ref	lected	Load

166 Impedance Matching

167 Transformer Ratings and Characteristics

168 Tapped and Multiple-Winding Transformers

169 Troubleshooting

Application Activity

17. RLC Circuits and Resonance

Part 1. Series Circuits

171 Impedance of Series RLC Circuits

172 Analysis of Series RLC Circuits

173 Series Resonance

Part 2. Parallel Circuits

174 Impedance of Parallel RLC Circuits

175 Analysis of Parallel RLC Circuits

176 Parallel Resonance

Part 3. Series-Parallel Circuits

177 Analysis of Series-Parallel RLC Circuits

Part 4. Special Topics

178 Bandwidth of Resonant Circuits

179 Applications

Application Activity

18. Passive Filters

181 Low-Pass Filters

182 High-Pass Filters

183 Band-Pass Filters

184 Band-Stop Filters

Application Activity

19. Circuit Theorems in AC Analysis

191 The Superposition Theorem

192 Thevenins Theorem

193 Nortons Theorem

194 Maximum Power Transfer Theorem

Application Activity

20. Time Response of Reactive Circuits

201 The RC Integrator
202 Response of an RC Integrator to a Single Pulse
203 Response of RC Integrators to Repetitive Pulses
204 Response of an RC Differentiator to a Single Pulse
205 Response of RC Differentiators to Repetitive Pulses
206 Response of RL Integrators to Pulse Inputs
207 Response of RL Differentiators to Pulse Inputs
208 Relationship of Time Response to Frequency Response
209 Troubleshooting

21. Three-Phase Systems in Power Applications

211 Generators in Power Applications

212 Types of Three-Phase Generators

213 Three-Phase Source/Load Analysis

214 Three-Phase Power

Application Activity

Appendices

Appendix A. Table of Standard Resistor Values

Appendix B. Derivations

Appendix C. Capacitor Label Coding

Appendix D. NI Multisim for Circuit Simulation

Answers to Odd-Numbered Problems

Glossary

Index