

FOURTH EDITION

Richard Wolfson

VOLUME TWO

Chapters 20-39

Essential University Physics

FOURTH EDITION
GLOBAL EDITION

Richard Wolfson

Middlebury College

Essential University Physics, Volume 2, Global Edition

Table of Contents

	ro	nt	C_0	``	or
г	ıu	ш	\mathbf{C}	Jν	eг

Title Page

Copyright Page

Brief Contents

Detailed Contents

About the Author

Preface to the Instructor

Preface to the Student

Video Tutor Demonstrations

Part Four Electromagnetism

20 Electric Charge, Force, and Field

- 20.1 Electric Charge
- 20.2 Coulombs Law
- 20.3 The Electric Field
- 20.4 Fields of Charge Distributions
- 20.5 Matter in Electric Fields

21 Gausss Law

- 21.1 Electric Field Lines
- 21.2 Electric Field and Electric Flux
- 21.3 Gausss Law
- 21.4 Using Gausss Law
- 21.5 Fields of Arbitrary Charge Distributions
- 21.6 Gausss Law and Conductors

22 Electric Potential

- 22.1 Electric Potential Difference
- 22.2 Calculating Potential Difference
- 22.3 Potential Difference and the Electric Field
- 22.4 Charged Conductors
- 23 Electrostatic Energy and Capacitors

- 23.1 Electrostatic Energy
- 23.2 Capacitors
- 23.3 Using Capacitors
- 23.4 Energy in the Electric Field

24 Electric Current

- 24.1 Electric Current
- 24.2 Conduction Mechanisms
- 24.3 Resistance and Ohms Law
- 24.4 Electric Power
- 24.5 Electrical Safety

25 Electric Circuits

- 25.1 Circuits, Symbols, and Electromotive Force
- 25.2 Series and Parallel Resistors
- 25.3 Kirchhoffs Laws and Multiloop Circuits
- 25.4 Electrical Measurements
- 25.5 Capacitors in Circuits

26 Magnetism: Force and Field

- 26.1 What Is Magnetism?
- 26.2 Magnetic Force and Field
- 26.3 Charged Particles in Magnetic Fields
- 26.4 The Magnetic Force on a Current
- 26.5 Origin of the Magnetic Field
- 26.6 Magnetic Dipoles
- 26.7 Magnetic Matter
- 26.8 Ampères Law

27 Electromagnetic Induction

- 27.1 Induced Currents
- 27.2 Faradays Law
- 27.3 Induction and Energy
- 27.4 Inductance
- 27.5 Magnetic Energy
- 27.6 Induced Electric Fields

28 Alternating-current Circuits

- 28.1 Alternating Current
- 28.2 Circuit Elements in Ac Circuits
- 28.3 LC Circuits
- 28.4 Driven RLC Circuits and Resonance

- 28.5 Power in AC Circuits
- 28.6 Transformers and Power Supplies

29 Maxwells Equations and Electromagnetic Waves

- 29.1 The Four Laws of Electromagnetism
- 29.2 Ambiguity in Ampères Law
- 29.3 Maxwells Equations
- 29.4 Electromagnetic Waves
- 29.5 Properties of Electromagnetic Waves
- 29.6 The Electromagnetic Spectrum
- 29.7 Producing Electromagnetic Waves
- 29.8 Energy and Momentum in Electromagnetic Waves

Part Five Optics

30 Reflection and Refraction

- 30.1 Reflection
- 30.2 Refraction
- 30.3 Total Internal Reflection
- 30.4 Dispersion

31 Images and Optical Instruments

- 31.1 Images with Mirrors
- 31.2 Images with Lenses
- 31.3 Refraction in Lenses: the Details
- 31.4 Optical Instruments

32 Interference and Diffraction

- 32.1 Coherence and Interference
- 32.2 Double-Slit Interference
- 32.3 Multiple-Slit Interference and Diffraction Gratings
- 32.4 Interferometry
- 32.5 Huygens Principle and Diffraction
- 32.6 The Diffraction Limit

Part Six Modern Physics

33 Relativity

- 33.1 Speed c Relative to What?
- 33.2 Matter, Motion, and the Ether
- 33.3 Special Relativity
- 33.4 Space and Time in Relativity
- 33.5 Simultaneity Is Relative

- 33.6 The Lorentz Transformations
- 33.7 Energy and Momentum in Relativity
- 33.8 Electromagnetism and Relativity
- 33.9 General Relativity

34 Particles and Waves

- 34.1 Toward Quantum Theory
- 34.2 Blackbody Radiation
- 34.3 Photons
- 34.4 Atomic Spectra and the Bohr Atom
- 34.5 Matter Waves
- 34.6 the Uncertainty Principle
- 34.7 Complementarity

35 Quantum Mechanics

- 35.1 Particles, Waves, and Probability
- 35.2 The Schrödinger Equation
- 35.3 Particles and Potentials
- 35.4 Quantum Mechanics in Three Dimensions
- 35.5 Relativistic Quantum Mechanics

36 Atomic Physics

- 36.1 The Hydrogen Atom
- 36.2 Electron Spin
- 36.3 The Exclusion Principle
- 36.4 Multielectron Atoms and the Periodic Table
- 36.5 Transitions and Atomic Spectra

37 Molecules and Solids

- 37.1 Molecular Bonding
- 37.2 Molecular Energy Levels
- 37.3 Solids
- 37.4 Superconductivity

38 Nuclear Physics

- 38.1 Elements, Isotopes, and Nuclear Structure
- 38.2 Radioactivity
- 38.3 Binding Energy and Nucleosynthesis
- 38.4 Nuclear Fission
- 38.5 Nuclear Fusion
- 39 From Quarks to the Cosmos

- 39.1 Particles and Forces
- 39.2 Particles and More Particles
- 39.3 Quarks and the Standard Model
- 39.4 Unification
- 39.5 The Evolving Universe

Appendices

Appendix A Mathematics

Appendix B The International Systemof Units (SI)

Appendix C Conversion Factors

Appendix D The Elements

Appendix E Astrophysical Data

Answers to Odd-Numbered Problems

Credits

Index