

# Chemistry

A Molecular Approach

FIFTH EDITION

Nivaldo J. Tro



# List of Elements with Their Symbols and Atomic Masses

| Element             | Symbol   | Atomic<br>Number | Atomic Mass                   | Element            | Symbol   | Atomic<br>Number | Atomic Mass                  |
|---------------------|----------|------------------|-------------------------------|--------------------|----------|------------------|------------------------------|
|                     | •        | Number<br>89     | 227.03 <sup>a</sup>           | Mendelevium        | Md       | 101              | 258.10 <sup>a</sup>          |
| Actinium            | Ac Al    |                  |                               |                    |          | 80               | 200.59                       |
| Aluminum            | Am       | 13<br>95         | 26.98<br>243.06 <sup>a</sup>  | Mercury Molybdenum | Hg<br>Mo | 42               | 95.95                        |
| Americium           | Sb       | 95<br>51         |                               |                    | Mc       | 115              | 289 <sup>a</sup>             |
| Antimony            |          |                  | 121.76                        | Moscovium          | Nd       | 60               | 144.24                       |
| Argon               | Ar       | 18               | 39.95                         | Neodymium          |          |                  |                              |
| Arsenic             | As       | 33               | 74.92                         | Neon               | Ne       | 10               | 20.18                        |
| Astatine            | At       | 85<br>56         | 209.99 <sup>a</sup>           | Neptunium          | Np       | 93<br>28         | 237.05 <sup>a</sup>          |
| Barium<br>Berkelium | Ba       | 97               | 137.33<br>247.07 <sup>a</sup> | Nickel<br>Nihonium | Ni<br>Nh | 113              | 58.69<br>284 <sup>a</sup>    |
|                     | Bk       |                  |                               | Niobium            |          |                  |                              |
| Beryllium           | Be D:    | 4                | 9.012                         |                    | Nb       | 41<br>7          | 92.91                        |
| Bismuth             | Bi       | 83               | 208.98                        | Nitrogen           | No No    | 102              | 14.01<br>259.10 <sup>a</sup> |
| Bohrium             | Bh       | 107              | 264.12 <sup>a</sup>           | Nobelium           |          |                  | 259.10°<br>294°              |
| Boron               | В        | 5                | 10.81                         | Oganesson          | Og       | 118              |                              |
| Bromine             | Br       | 35               | 79.90                         | Osmium             | Os       | 76               | 190.23                       |
| Cadmium             | Cd       | 48               | 112.41                        | Oxygen             | 0        | 8                | 16.00                        |
| Calcium             | Ca       | 20               | 40.08                         | Palladium          | Pd       | 46               | 106.42                       |
| Californium         | Cf       | 98               | 251.08 <sup>a</sup>           | Phosphorus         | P        | 15               | 30.97                        |
| Carbon              | С        | 6                | 12.01                         | Platinum           | Pt       | 78               | 195.08                       |
| Cerium              | Се       | 58               | 140.12                        | Plutonium          | Pu       | 94               | 244.06 <sup>a</sup>          |
| Cesium              | Cs       | 55               | 132.91                        | Polonium           | Ро       | 84               | 208.98 <sup>a</sup>          |
| Chlorine            | Cl       | 17               | 35.45                         | Potassium          | K        | 19               | 39.10                        |
| Chromium            | Cr       | 24               | 52.00                         | Praseodymium       | Pr       | 59               | 140.91                       |
| Cobalt              | Со       | 27               | 58.93                         | Promethium         | Pm       | 61               | 145ª                         |
| Copernicium         | Cn       | 112              | 285 <sup>a</sup>              | Protactinium       | Pa       | 91               | 231.04                       |
| Copper              | Cu       | 29               | 63.55                         | Radium             | Ra       | 88               | 226.03 <sup>a</sup>          |
| Curium              | Cm       | 96               | 247.07 <sup>a</sup>           | Radon              | Rn       | 86               | 222.02 <sup>a</sup>          |
| Darmstadtium        | Ds       | 110              | 271 <sup>a</sup>              | Rhenium            | Re       | 75               | 186.21                       |
| Dubnium             | Db       | 105              | 262.11 <sup>a</sup>           | Rhodium            | Rh       | 45               | 102.91                       |
| Dysprosium          | Dy       | 66               | 162.50                        | Roentgenium        | Rg       | 111              | 272 <sup>a</sup>             |
| Einsteinium         | Es       | 99               | 252.08 <sup>a</sup>           | Rubidium           | Rb       | 37               | 85.47                        |
| Erbium              | Er       | 68               | 167.26                        | Ruthenium          | Ru       | 44               | 101.07                       |
| Europium            | Eu       | 63               | 151.96                        | Rutherfordium      | Rf       | 104              | 261.11 <sup>a</sup>          |
| Fermium             | Fm       | 100              | 257.10 <sup>a</sup>           | Samarium           | Sm       | 62               | 150.36                       |
| Flerovium           | Fl       | 114              | 289ª                          | Scandium           | Sc       | 21               | 44.96                        |
| Fluorine            | F        | 9                | 19.00                         | Seaborgium         | Sg       | 106              | 266.12 <sup>a</sup>          |
| Francium            | Fr       | 87               | 223.02 <sup>a</sup>           | Selenium           | Se       | 34               | 78.97                        |
| Gadolinium          | Gd       | 64               | 157.25                        | Silicon            | Si       | 14               | 28.09                        |
| Gallium             | Ga       | 31               | 69.72                         | Silver             | Ag       | 47               | 107.87                       |
| Germanium           | Ge       | 32               | 72.63                         | Sodium             | Na       | 11               | 22.99                        |
| Gold                | Au       | 79               | 196.97                        | Strontium          | Sr       | 38               | 87.62                        |
| Hafnium             | Hf       | 72               | 178.49                        | Sulfur             | S        | 16               | 32.06                        |
| Hassium             | Hs       | 108              | 269.13 <sup>a</sup>           | Tantalum           | Та       | 73               | 180.95                       |
| Helium              | He       | 2                | 4.003                         | Technetium         | Tc       | 43               | 98ª                          |
| Holmium             | Но       | 67               | 164.93                        | Tellurium          | Te       | 52               | 127.60                       |
| Hydrogen            | Н        | 1                | 1.008                         | Tennessine         | Ts       | 117              | 294 <sup>a</sup>             |
| Indium              | In       | 49               | 114.82                        | Terbium            | Tb       | 65               | 158.93                       |
| lodine              | 1        | 53               | 126.90                        | Thallium           | TI       | 81               | 204.38                       |
| Iridium             | lr       | 77               | 192.22                        | Thorium            | Th       | 90               | 232.04                       |
| Iron                | Fe       | 26               | 55.85                         | Thulium            | Tm       | 69               | 168.93                       |
| Krypton             | Kr       | 36               | 83.80                         | Tin                | Sn       | 50               | 118.71                       |
| Lanthanum           | La       | 57               | 138.91                        | Titanium           | Ti       | 22               | 47.87                        |
|                     | La<br>Lr | 103              | 262.11 <sup>a</sup>           | Tungsten           | W        | 74               | 183.84                       |
| Lawrencium          |          |                  |                               |                    | U        | 92               |                              |
| Lead                | Pb       | 82               | 207.2                         | Uranium            | U        | 23               | 238.03                       |
| Lithium             | Li       | 3                | 6.94                          | Vanadium           |          |                  | 50.94                        |
| Livermorium         | Lv       | 116              | 292 <sup>a</sup>              | Xenon              | Xe       | 54               | 131.293                      |
| Lutetium            | Lu       | 71               | 174.97                        | Ytterbium          | Yb       | 70               | 173.05                       |
| Magnesium           | Mg       | 12               | 24.31                         | Yttrium            | Y 7      | 39               | 88.91                        |
| Manganese           | Mn       | 25               | 54.94                         | Zinc               | Zn       | 30               | 65.38                        |
| Meitnerium          | Mt       | 109              | 268.14 <sup>a</sup>           | Zirconium          | Zr       | 40               | 91.22                        |

 $<sup>^{\</sup>rm a}{\rm Mass}$  of longest-lived or most important isotope.

# Chemistry: A Molecular Approach, Global Edition

# **Table of Contents**

| $\sim$ |    |    |    |
|--------|----|----|----|
| U      | O١ | vе | ١r |

List of Elements with Their Symbols and Atomic Masses

Title Page

Copyright

About the Author

**Brief Contents** 

Interactive Media Contents in Mastering Chemistry

Contents

**Preface** 

Chapter 1: Matter, Measurement, and Problem Solving

- 1.1 Atoms and Molecules
- 1.2 The Scientific Approach to Knowledge

The Nature of Science Thomas S. Kuhn and Scientific Revolutions

1.3 The Classification of Matter

The States of Matter: Solid, Liquid, and Gas

Classifying Matter by Composition: Elements, Compounds, and Mixtures

Separating Mixtures

- 1.4 Physical and Chemical Changes and Physical and Chemical Properties
- 1.5 Energy: A Fundamental Part of Physical and Chemical Change
- 1.6 The Units of Measurement

Standard Units

The Meter: A Measure of Length
The Kilogram: A Measure of Mass
The Second: A Measure of Time

The Kelvin: A Measure of Temperature

**Prefix Multipliers** 

Derived Units: Volume and Density

Volume Density

Calculating Density



Chemistry and Medicine Bone Density

# 1.7 The Reliability of a Measurement

Counting Significant Figures

**Exact Numbers** 

Significant Figures in Calculations

Precision and Accuracy

Chemistry in Your Day Integrity in Data Gathering

# 1.8 Solving Chemical Problems

Converting from One Unit to Another

General Problem-Solving Strategy

Units Raised to a Power

Order-of-Magnitude Estimations

Problems Involving an Equation

# 1.9 Analyzing and Interpreting Data

Identifying Patterns in Data

Interpreting Graphs

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

Equations and Relationships

**Learning Outcomes** 

# **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 2: Atoms and Elements

- 2.1 Brownian Motion: Atoms Confirmed
- 2.2 Early Ideas about the Building Blocks of Matter
- 2.3 Modern Atomic Theory and the Laws That Led to It

The Law of Conservation of Mass



The Law of Definite Proportions

The Law of Multiple Proportions

John Dalton and the Atomic Theory

Chemistry in Your Day Atoms and Humans

# 2.4 The Discovery of the Electron

Cathode Rays

Millikans Oil Drop Experiment: The Charge of the Electron

# 2.5 The Structure of the Atom

# 2.6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms

Elements: Defined by Their Numbers of Protons

Isotopes: When the Number of Neutrons Varies

Ions: Losing and Gaining Electrons

Chemistry in Your Day Where Did Elements Come From?

# 2.7 Finding Patterns: The Periodic Law and the Periodic Table

Modern Periodic Table Organization

Ions and the Periodic Table

Chemistry and Medicine The Elements of Life

# 2.8 Atomic Mass: The Average Mass of an Elements Atoms

Mass Spectrometry: Measuring the Mass of Atoms and Molecules

Chemistry in Your Day Evolving Atomic Masses

### 2.9 Molar Mass: Counting Atoms by Weighing Them

The Mole: A Chemists Dozen

Converting between Number of Moles and Number of Atoms

Converting between Mass and Amount (Number of Moles)

### Chapter in Review

Self-Assessment Quiz

Terms

Concepts

Equations and Relationships

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems



Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 3: Molecules and Compounds

- 3.1 Hydrogen, Oxygen, and Water
- 3.2 Chemical Bonds

Ionic Bonds

**Covalent Bonds** 

3.3 Representing Compounds: Chemical Formulas and Molecular Models

Types of Chemical Formulas

Molecular Models

- 3.4 An Atomic-Level View of Elements and Compounds
- 3.5 Ionic Compounds: Formulas and Names

Writing Formulas for Ionic Compounds

Naming Ionic Compounds

Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation

Naming Binary Ionic Compounds Containing a Metal That Forms More Than One Kind of Cation

Naming Ionic Compounds Containing Polyatomic Ions

Hydrated Ionic Compounds

3.6 Molecular Compounds: Formulas and Names

Naming Molecular Compounds

Naming Acids

Naming Binary Acids

Naming Oxyacids

Chemistry in the Environment Acid Rain

- 3.7 Summary of Inorganic Nomenclature
- 3.8 Formula Mass and the Mole Concept for Compounds

Molar Mass of a Compound

Using Molar Mass to Count Molecules by Weighing

3.9 Composition of Compounds

Mass Percent Composition as a Conversion Factor

Conversion Factors from Chemical Formulas

Chemistry and Medicine Methylmercury in Fish

3.10 Determining a Chemical Formula from Experimental Data

Determining Molecular Formulas for Compounds

Combustion Analysis



# 3.11 Organic Compounds

Hydrocarbons

Functionalized Hydrocarbons

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

Cumulative Problems

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 4: Chemical Reactions and Chemical Quantities

- 4.1 Climate Change and the Combustion of Fossil Fuels
- 4.2 Writing and Balancing Chemical Equations
- 4.3 Reaction Stoichiometry: How Much Carbon Dioxide?

Making Pizza: The Relationships among Ingredients

Making Molecules: Mole-to-Mole Conversions
Making Molecules: Mass-to-Mass Conversions

4.4 Stoichiometric Relationships: Limiting Reactant, Theoretical Yield, Percent Yield, and Reactant in Excess

Calculating Limiting Reactant, Theoretical Yield, and Percent Yield

Calculating Limiting Reactant, Theoretical Yield, and Percent Yield from Initial Reactant Masses

4.5 Three Examples of Chemical Reactions: Combustion, Alkali Metals, and

Halogens

Combustion Reactions

Alkali Metal Reactions

Halogen Reactions

Chapter in Review

Self-Assessment Quiz



**Terms** 

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 5: Introduction to Solutions and Aqueous Reactions

- 5.1 Molecular Gastronomy and the Spherified Cherry
- 5.2 Solution Concentration

Solution Concentration

Using Molarity in Calculations

Solution Dilution

- 5.3 Solution Stoichiometry
- 5.4 Types of Aqueous Solutions and Solubility

Electrolyte and Nonelectrolyte Solutions

The Solubility of Ionic Compounds

- 5.5 Precipitation Reactions
- 5.6 Representing Aqueous Reactions: Molecular, Ionic, and Net Ionic Equations
- 5.7 AcidBase Reactions

AcidBase Reactions

AcidBase Titrations

- 5.8 Gas-Evolution Reactions
- 5.9 OxidationReduction Reactions

Oxidation States

Identifying Redox Reactions

The Activity Series: Predicting Whether a Redox Reaction Is Spontaneous

Chemistry in Your Day Bleached Blonde

Chapter in Review



Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 6: Gases

6.1 Supersonic Skydiving and the Risk of Decompression

6.2 Pressure: The Result of Molecular Collisions

**Pressure Units** 

The Manometer: A Way to Measure Pressure in the Laboratory

Chemistry and Medicine Blood Pressure

6.3 The Simple Gas Laws: Boyles Law, Charless Law, and Avogadros Law

Boyles Law: Volume and Pressure

Charless Law: Volume and Temperature
Chemistry in Your Day Extra-Long Snorkels

Avogadros Law: Volume and Amount (in Moles)

- 6.4 The Ideal Gas Law
- 6.5 Applications of the Ideal Gas Law: Molar Volume, Density, and Molar Mass of a Gas

Molar Volume at Standard Temperature and Pressure

Density of a Gas

Molar Mass of a Gas

6.6 Mixtures of Gases and Partial Pressures

Deep-Sea Diving and Partial Pressures

Collecting Gases over Water

6.7 Gases in Chemical Reactions: Stoichiometry Revisited

Molar Volume and Stoichiometry

Analyzing and Interpreting Data Good News about Our Nations Air Quality



# 6.8 Kinetic Molecular Theory: A Model for Gases

How Kinetic Molecular Theory Explains Pressure and the Simple Gas Laws

Kinetic Molecular Theory and the Ideal Gas Law

Temperature and Molecular Velocities

# 6.9 Mean Free Path, Diffusion, and Effusion of Gases

## 6.10 Real Gases: The Effects of Size and Intermolecular Forces

The Effect of the Finite Volume of Gas Particles

The Effect of Intermolecular Forces

Van der Waals Equation

Real Gases

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 7: Thermochemistry

# 7.1 Chemical Hand Warmers

# 7.2 The Nature of Energy: Key Definitions

Types of Energy

Energy Conservation and Energy Transfer

Units of Energy

# 7.3 The First Law of Thermodynamics: There Is No Free Lunch

Internal Energy

Chemistry in Your Day Redheffers Perpetual Motion Machine

Heat and Work

# 7.4 Quantifying Heat and Work



Heat

Temperature Changes and Heat Capacity

Thermal Energy Transfer

Work: PressureVolume Work

- 7.5 Measuring E for Chemical Reactions: Constant-Volume Calorimetry
- 7.6 Enthalpy: The Heat Evolved in a Chemical Reaction at Constant Pressure

Exothermic and Endothermic Processes: A Molecular View

Stoichiometry Involving H: Thermochemical Equations

- 7.7 Constant-Pressure Calorimetry: Measuring Hrxn
- 7.8 Relationships Involving Hrxn
- 7.9 Determining Enthalpies of Reaction from Standard Enthalpies of Formation

Standard States and Standard Enthalpy Changes

Calculating the Standard Enthalpy Change for a Reaction

7.10 Energy Use and the Environment

**Energy Consumption** 

Environmental Problems Associated with Fossil Fuel Use

Air Pollution

Global Climate Change

Chemistry in the Environment Renewable Energy

# Chapter in Review

Self-Assessment Quiz

**Terms** 

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

Chapter 8: The Quantum-Mechanical Model of the Atom

8.1 Schrödingers Cat



# 8.2 The Nature of Light

The Wave Nature of Light

The Electromagnetic Spectrum

Chemistry and Medicine Radiation Treatment for Cancer

Interference and Diffraction

The Particle Nature of Light

# 8.3 Atomic Spectroscopy and the Bohr Model

Chemistry in Your Day Atomic Spectroscopy, a Bar Code for Atoms

# 8.4 The Wave Nature of Matter: The de Broglie Wavelength, the Uncertainty Principle, and Indeterminacy

The de Broglie Wavelength

The Uncertainty Principle

Indeterminacy and Probability Distribution Maps

### 8.5 Quantum Mechanics and the Atom

Solutions to the Schrödinger Equation for the Hydrogen Atom

Atomic Spectroscopy Explained

# 8.6 The Shapes of Atomic Orbitals

s Orbitals (I = 0)

p Orbitals (I = 1)

d Orbitals (I = 2)

f Orbitals (I = 3)

The Phase of Orbitals

The Shape of Atoms

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work



Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 9: Periodic Properties of the Elements

- 9.1 Nerve Signal Transmission
- 9.2 The Development of the Periodic Table
- 9.3 Electron Configurations: How Electrons Occupy Orbitals

Electron Spin and the Pauli Exclusion Principle

Sublevel Energy Splitting in Multielectron Atoms

Coulombs Law

Shielding

Penetration

Electron Spatial Distributions and Sublevel Splitting

Electron Configurations for Multielectron Atoms

9.4 Electron Configurations, Valence Electrons, and the Periodic Table

Orbital Blocks in the Periodic Table

Writing an Electron Configuration for an Element from Its Position in the Periodic Table

The Transition and Inner Transition Elements

- 9.5 The Explanatory Power of the Quantum-Mechanical Model
- 9.6 Periodic Trends in the Size of Atoms and Effective Nuclear Charge

Effective Nuclear Charge

Atomic Radii and the Transition Elements

9.7 Ions: Electron Configurations, Magnetic Properties, Ionic Radii, and Ionization Energy

Electron Configurations and Magnetic Properties of Ions

Ionic Radii

Ionization Energy

Trends in First Ionization Energy

Exceptions to Trends in First Ionization Energy

Trends in Second and Successive Ionization Energies

9.8 Electron Affinities and Metallic Character

**Electron Affinity** 

Metallic Character

9.9 Periodic Trends Summary

Chapter in Review

Self-Assessment Quiz

Terms



Concepts

Equations and Relationships

Learning Outcomes

## **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 10: Chemical Bonding I: The Lewis Model

- 10.1 Bonding Models and AIDS Drugs
- 10.2 Types of Chemical Bonds
- 10.3 Representing Valence Electrons with Dots
- 10.4 Ionic Bonding: Lewis Symbols and Lattice Energies

Ionic Bonding and Electron Transfer

Lattice Energy: The Rest of the Story

The BornHaber Cycle

Trends in Lattice Energies: Ion Size Trends in Lattice Energies: Ion Charge

Ionic Bonding: Models and Reality

Chemistry and Medicine Ionic Compounds in Medicine

### 10.5 Covalent Bonding: Lewis Structures

Single Covalent Bonds

**Double and Triple Covalent Bonds** 

Covalent Bonding: Models and Reality

# 10.6 Electronegativity and Bond Polarity

Electronegativity

Bond Polarity, Dipole Moment, and Percent Ionic Character

# 10.7 Lewis Structures of Molecular Compounds and Polyatomic Ions

Writing Lewis Structures for Molecular Compounds

Writing Lewis Structures for Polyatomic Ions

# 10.8 Resonance and Formal Charge

Resonance



### Formal Charge

# 10.9 Exceptions to the Octet Rule: Odd-Electron Species, Incomplete Octets, and Expanded Octets

**Odd-Electron Species** 

Incomplete Octets

Chemistry in the Environment Free Radicals and the Atmospheric Vacuum Cleaner

**Expanded Octets** 

# 10.10 Bond Energies and Bond Lengths

**Bond Energy** 

Using Average Bond Energies to Estimate Enthalpy Changes for Reactions

**Bond Lengths** 

# 10.11 Bonding in Metals: The Electron Sea Model

Chemistry in the Environment The Lewis Structure of Ozone

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

Cumulative Problems

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 11: Chemical Bonding II: Molecular Shapes, Valence Bond

Theory, and Molecular Orbital Theory

11.1 Morphine: A Molecular Imposter

11.2 VSEPR Theory: The Five Basic Shapes

Two Electron Groups: Linear Geometry

Three Electron Groups: Trigonal Planar Geometry

Four Electron Groups: Tetrahedral Geometry

Five Electron Groups: Trigonal Bipyramidal Geometry



Six Electron Groups: Octahedral Geometry

# 11.3 VSEPR Theory: The Effect of Lone Pairs

Four Electron Groups with Lone Pairs

Five Electron Groups with Lone Pairs

Six Electron Groups with Lone Pairs

# 11.4 VSEPR Theory: Predicting Molecular Geometries

Representing Molecular Geometries on Paper

Predicting the Shapes of Larger Molecules

# 11.5 Molecular Shape and Polarity

Vector Addition

Chemistry in Your Day How Soap Works

# 11.6 Valence Bond Theory: Orbital Overlap as a Chemical Bond

# 11.7 Valence Bond Theory: Hybridization of Atomic Orbitals

sp3 Hybridization

sp2 Hybridization and Double Bonds

Chemistry in Your Day The Chemistry of Vision

sp Hybridization and Triple Bonds

sp3d and sp3d2 Hybridization

Writing Hybridization and Bonding Schemes

# 11.8 Molecular Orbital Theory: Electron Delocalization

Linear Combination of Atomic Orbitals (LCAOs)

Period Two Homonuclear Diatomic Molecules

Second-Period Heteronuclear Diatomic Molecules

Polyatomic Molecules

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

Equations and Relationships

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems



Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 12: Liquids, Solids, and Intermolecular Forces

12.1 Water, No Gravity

12.2 Solids, Liquids, and Gases: A Molecular Comparison

Differences between States of Matter

Changes between States

# 12.3 Intermolecular Forces: The Forces That Hold Condensed States Together

Dispersion Force

Dipole Dipole Force

Hydrogen Bonding

IonDipole Force

Chemistry and Medicine Hydrogen Bonding in DNA

# 12.4 Intermolecular Forces in Action: Surface Tension, Viscosity, and Capillary Action

Surface Tension

Viscosity

Chemistry in Your Day Viscosity and Motor Oil

Capillary Action

# 12.5 Vaporization and Vapor Pressure

The Process of Vaporization

The Energetics of Vaporization

Vapor Pressure and Dynamic Equilibrium

Temperature Dependence of Vapor Pressure and Boiling Point

The Clausius Clapeyron Equation

The Critical Point: The Transition to an Unusual State of Matter

### 12.6 Sublimation and Fusion

Sublimation

**Fusion** 

**Energetics of Melting and Freezing** 

# 12.7 Heating Curve for Water

# 12.8 Phase Diagrams

The Major Features of a Phase Diagram

Navigation within a Phase Diagram

The Phase Diagrams of Other Substances

### 12.9 Water: An Extraordinary Substance



Chemistry in the Environment Water Pollution

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 13: Solids and Modern Materials

13.1 Friday Night Experiments: The Discovery of Graphene

13.2 X-Ray Crystallography

13.3 Unit Cells and Basic Structures

**Cubic Unit Cells** 

Closest-Packed Structures

# 13.4 The Fundamental Types of Crystalline Solids

Molecular Solids

Chemistry in Your Day Chocolate, An Edible Material

Ionic Solids

Atomic Solids

### 13.5 The Structures of Ionic Solids

# 13.6 Network Covalent Atomic Solids: Carbon and Silicates

Carbon

Silicates

# 13.7 Ceramics, Cement, and Glass

Ceramics

Cement

Glass

13.8 Semiconductors and Band Theory



Molecular Orbitals and Energy Bands

Doping: Controlling the Conductivity of Semiconductors

# 13.9 Polymers and Plastics

Chemistry in Your Day Kevlar

## Chapter in Review

Self-Assessment Quiz

Terms

Concepts

Equations and Relationships

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 14: Solutions

# 14.1 Thirsty Solutions: Why You Shouldnt Drink Seawater

# 14.2 Types of Solutions and Solubility

Natures Tendency toward Mixing: Entropy

The Effect of Intermolecular Forces

### 14.3 Energetics of Solution Formation

**Energy Changes in Solution Formation** 

Aqueous Solutions and Heats of Hydration

# 14.4 Solution Equilibrium and Factors Affecting Solubility

The Temperature Dependence of the Solubility of Solids

Factors Affecting the Solubility of Gases in Water

# 14.5 Expressing Solution Concentration

Chemistry in the Environment Lake Nyos

Molarity

Molality

Parts by Mass and Parts by Volume

Using Parts by Mass (or Parts by Volume) in Calculations



Mole Fraction and Mole Percent

Chemistry in the Environment The Dirty Dozen

# 14.6 Colligative Properties: Vapor Pressure Lowering, Freezing Point Depression, Boiling Point Elevation, and Osmotic Pressure

Vapor Pressure Lowering

Vapor Pressures of Solutions Containing a Volatile (Nonelectrolyte) Solute

Freezing Point Depression and Boiling Point Elevation

Chemistry in Your Day Antifreeze in Frogs

Osmotic Pressure

# 14.7 Colligative Properties of Strong Electrolyte Solutions

Strong Electrolytes and Vapor Pressure

Colligative Properties and Medical Solutions

### 14.8 Colloids

# Chapter in Review

Self-Assessment Quiz

**Terms** 

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

Cumulative Problems

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 15: Chemical Kinetics

# 15.1 Catching Lizards

### 15.2 The Rate of a Chemical Reaction

**Definition of Reaction Rate** 

Measuring Reaction Rates

### 15.3 The Rate Law: The Effect of Concentration on Reaction Rate

The Three Common Reaction Orders (n = 0, 1, and 2)

Determining the Order of a Reaction



Reaction Order for Multiple Reactants

# 15.4 The Integrated Rate Law: The Dependence of Concentration on Time

The Integrated Rate Law

The Half-Life of a Reaction

# 15.5 The Effect of Temperature on Reaction Rate

The Arrhenius Equation

The Activation Energy, Frequency Factor, and Exponential Factor

Arrhenius Plots: Experimental Measurements of the Frequency Factor and the Activation

Energy

The Collision Model: A Closer Look at the Frequency Factor

# 15.6 Reaction Mechanisms

Rate Laws for Elementary Steps

Rate-Determining Steps and Overall Reaction Rate Laws

Mechanisms with a Fast Initial Step

# 15.7 Catalysis

Homogeneous and Heterogeneous Catalysis

**Enzymes: Biological Catalysts** 

Chemistry and Medicine Enzyme Catalysis and the Role of Chymotrypsin in Digestion

# Chapter in Review

Self-Assessment Quiz

**Terms** 

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 16: Chemical Equilibrium

16.1 Fetal Hemoglobin and Equilibrium

16.2 The Concept of Dynamic Equilibrium



# 16.3 The Equilibrium Constant (K)

Expressing Equilibrium Constants for Chemical Reactions

The Significance of the Equilibrium Constant

Chemistry and Medicine Life and Equilibrium

Relationships between the Equilibrium Constant and the Chemical Equation

### 16.4 Expressing the Equilibrium Constant in Terms of Pressure

Relationship Between Kp and Kc

Units of K

- 16.5 Heterogeneous Equilibria: Reactions Involving Solids and Liquids
- 16.6 Calculating the Equilibrium Constant from Measured Equilibrium Concentrations
- 16.7 The Reaction Quotient: Predicting the Direction of Change

# 16.8 Finding Equilibrium Concentrations

Finding Equilibrium Concentrations from the Equilibrium Constant and All but One of the Equilibrium Concentrations of the Reactants and Products

Finding Equilibrium Concentrations from the Equilibrium Constant and Initial Concentrations or Pressures

Simplifying Approximations in Working Equilibrium Problems

# 16.9 Le Châteliers Principle: How a System at Equilibrium Responds to Disturbances

The Effect of a Concentration Change on Equilibrium

The Effect of a Volume (or Pressure) Change on Equilibrium

The Effect of a Temperature Change on Equilibrium

### Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### Exercises

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections



# Chapter 17: Acids and Bases

- 17.1 Heartburn
- 17.2 The Nature of Acids and Bases
- 17.3 Definitions of Acids and Bases

The Arrhenius Definition

The BrønstedLowry Definition

# 17.4 Acid Strength and the Acid Ionization Constant (Ka)

Strong Acids

Weak Acids

The Acid Ionization Constant (Ka)

# 17.5 Autoionization of Water and pH

The pH Scale: A Way to Quantify Acidity and Basicity

pOH and Other p Scales

Chemistry and Medicine Ulcers

# 17.6 Finding the [H3O+] and pH of Strong and Weak Acid Solutions

Strong Acids

Weak Acids

Percent Ionization of a Weak Acid

Mixtures of Acids

## 17.7 Base Solutions

Strong Bases

Weak Bases

Finding the [OH-] and pH of Basic Solutions

Chemistry and Medicine Whats in My Antacid?

# 17.8 The AcidBase Properties of Ions and Salts

Anions as Weak Bases

Cations as Weak Acids

Classifying Salt Solutions as Acidic, Basic, or Neutral

# 17.9 Polyprotic Acids

Finding the pH of Polyprotic Acid Solutions

Finding the Concentration of the Anions for a Weak Diprotic Acid Solution

# 17.10 Acid Strength and Molecular Structure

**Binary Acids** 

Oxyacids

# 17.11 Lewis Acids and Bases



Molecules That Act as Lewis Acids

Cations That Act as Lewis Acids

### 17.12 Acid Rain

Effects of Acid Rain

Acid Rain Legislation

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 18: Aqueous Ionic Equilibrium

# 18.1 The Danger of Antifreeze

# 18.2 Buffers: Solutions That Resist pH Change

Calculating the pH of a Buffer Solution

The HendersonHasselbalch Equation

Calculating pH Changes in a Buffer Solution

The Stoichiometry Calculation

The Equilibrium Calculation

Buffers Containing a Base and Its Conjugate Acid

# 18.3 Buffer Effectiveness: Buffer Range and Buffer Capacity

Relative Amounts of Acid and Base

Absolute Concentrations of the Acid and Conjugate Base

**Buffer Range** 

Chemistry and Medicine Buffer Effectiveness in Human Blood

**Buffer Capacity** 

# 18.4 Titrations and pH Curves



The Titration of a Strong Acid with a Strong Base

The Titration of a Weak Acid with a Strong Base

The Titration of a Weak Base with a Strong Acid

The Titration of a Polyprotic Acid

Indicators: pH-Dependent Colors

# 18.5 Solubility Equilibria and the Solubility Product Constant

Ksp and Molar Solubility

Chemistry in Your Day Hard Water

Ksp and Relative Solubility

The Effect of a Common Ion on Solubility

The Effect of pH on Solubility

# 18.6 Precipitation

Selective Precipitation

# 18.7 Qualitative Chemical Analysis

Group 1: Insoluble Chlorides

Group 2: Acid-Insoluble Sulfides

Group 3: Base-Insoluble Sulfides and Hydroxides

Group 4: Insoluble Phosphates

Group 5: Alkali Metals and NH4+

# 18.8 Complex Ion Equilibria

The Effect of Complex Ion Equilibria on Solubility

The Solubility of Amphoteric Metal Hydroxides

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis



Answers to Conceptual Connections

# Chapter 19: Free Energy and Thermodynamics

- 19.1 Cold Coffee and Dead Universes
- 19.2 Spontaneous and Nonspontaneous Processes
- 19.3 Entropy and the Second Law of Thermodynamics

Entropy

The Entropy Change upon the Expansion of an Ideal Gas

# 19.4 Entropy Changes Associated with State Changes

Entropy and State Change: The Concept

Entropy and State Changes: The Calculation

# 19.5 Heat Transfer and Changes in the Entropy of the Surroundings

The Temperature Dependence of Ssurr

Quantifying Entropy Changes in the Surroundings

# 19.6 Gibbs Free Energy

The Effect of H, S, and T on Spontaneity

# 19.7 Entropy Changes in Chemical Reactions: Calculating S°rxn

Defining Standard States and Standard Entropy Changes

Standard Molar Entropies (S°) and the Third Law of Thermodynamics

Calculating the Standard Entropy Change (S°rxn) for a Reaction

# 19.8 Free Energy Changes in Chemical Reactions: Calculating G°rxn

Calculating Standard Free Energy Changes with G°rxn = H°rxn - TS°rxn

Calculating G°rxn with Tabulated Values of Free Energies of Formation

Chemistry in Your Day Making a Nonspontaneous Process Spontaneous

Calculating G°rxn for a Stepwise Reaction from the Changes in Free Energy for Each of the Steps

Why Free Energy Is Free"

# 19.9 Free Energy Changes for Nonstandard States: The Relationship between

G°rxn and Grxn

Standard versus Nonstandard States

The Free Energy Change of a Reaction under Nonstandard Conditions

Standard Conditions

**Equilibrium Conditions** 

Other Nonstandard Conditions

# 19.10 Free Energy and Equilibrium: Relating G°rxn to the Equilibrium Constant (K)

The Relationship between G°rxn and K

The Temperature Dependence of the Equilibrium Constant

Chapter in Review



Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 20: Electrochemistry

- 20.1 Lightning and Batteries
- 20.2 Balancing OxidationReduction Equations
- 20.3 Voltaic (or Galvanic) Cells: Generating Electricity from Spontaneous Chemical Reactions

The Voltaic Cell

Current and Potential Difference

Anode, Cathode, and Salt Bridge

**Electrochemical Cell Notation** 

### 20.4 Standard Electrode Potentials

Predicting the Spontaneous Direction of an OxidationReduction Reaction

Predicting Whether a Metal Will Dissolve in Acid

# 20.5 Cell Potential, Free Energy, and the Equilibrium Constant

The Relationship between G° and E °cell

The Relationship between E °cell and K

# 20.6 Cell Potential and Concentration

Cell Potential under Nonstandard Conditions: The Nernst Equation

Concentration Cells

Chemistry and Medicine Concentration Cells in Human Nerve Cells

# 20.7 Batteries: Using Chemistry to Generate Electricity

**Dry-Cell Batteries** 

LeadAcid Storage Batteries



Other Rechargeable Batteries

Fuel Cells

Chemistry in Your Day The Fuel-Cell Breathalyzer

20.8 Electrolysis: Driving Nonspontaneous Chemical Reactions with Electricity

Predicting the Products of Electrolysis

Stoichiometry of Electrolysis

20.9 Corrosion: Undesirable Redox Reactions

Corrosion of Iron

Preventing the Corrosion of Iron

Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 21: Radioactivity and Nuclear Chemistry

21.1 Diagnosing Appendicitis

21.2 The Discovery of Radioactivity

21.3 Types of Radioactivity

Alpha () Decay

Beta () Decay

Gamma () Ray Emission

Positron Emission

**Electron Capture** 

21.4 The Valley of Stability: Predicting the Type of Radioactivity

Magic Numbers

Radioactive Decay Series



# 21.5 Detecting Radioactivity

# 21.6 The Kinetics of Radioactive Decay and Radiometric Dating

The Integrated Rate Law

Radiocarbon Dating: Using Radioactivity to Measure the Age of Fossils and Artifacts

Chemistry in Your Day Radiocarbon Dating and the Shroud of Turin

Uranium/Lead Dating

The Age of Earth

# 21.7 The Discovery of Fission: The Atomic Bomb and Nuclear Power

The Manhattan Project

Nuclear Power: Using Fission to Generate Electricity

Problems with Nuclear Power

# 21.8 Converting Mass to Energy: Mass Defect and Nuclear Binding Energy

Mass Defect and Nuclear Binding Energy

The Nuclear Binding Energy Curve

### 21.9 Nuclear Fusion: The Power of the Sun

# 21.10 Nuclear Transmutation and Transuranium Elements

### 21.11 The Effects of Radiation on Life

Acute Radiation Damage

Increased Cancer Risk

Genetic Defects

Measuring Radiation Exposure and Dose

# 21.12 Radioactivity in Medicine and Other Applications

Diagnosis in Medicine

Radiotherapy in Medicine

Other Applications

# Chapter in Review

Self-Assessment Quiz

**Terms** 

Concepts

**Equations and Relationships** 

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems



Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 22: Organic Chemistry

# 22.1 Fragrances and Odors

22.2 Carbon: Why It Is Unique

Chemistry in Your Day Vitalism and the Perceived Differences between Organic and Inorganic Compounds

# 22.3 Hydrocarbons: Compounds Containing Only Carbon and Hydrogen

Drawing Hydrocarbon Structures

Stereoisomerism and Optical Isomerism

Rotation of Polarized Light

Chemical Behavior in a Chiral Environment

# 22.4 Alkanes: Saturated Hydrocarbons

Naming Alkanes

# 22.5 Alkenes and Alkynes

Naming Alkenes and Alkynes

Geometric (CisTrans) Isomerism in Alkenes

# 22.6 Hydrocarbon Reactions

Reactions of Alkanes

Reactions of Alkenes and Alkynes

### 22.7 Aromatic Hydrocarbons

Naming Aromatic Hydrocarbons

Reactions of Aromatic Compounds

### 22.8 Functional Groups

### 22.9 Alcohols

Naming Alcohols

**About Alcohols** 

**Alcohol Reactions** 

# 22.10 Aldehydes and Ketones

Naming Aldehydes and Ketones

About Aldehydes and Ketones

Aldehyde and Ketone Reactions

### 22.11 Carboxylic Acids and Esters

Naming Carboxylic Acids and Esters



About Carboxylic Acids and Esters

Carboxylic Acid and Ester Reactions

### 22.12 Ethers

Naming Ethers

**About Ethers** 

### 22.13 Amines

**Amine Reactions** 

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 23: Biochemistry

# 23.1 Diabetes and the Synthesis of Human Insulin

# 23.2 Lipids

Fatty Acids

Fats and Oils

Other Lipids

# 23.3 Carbohydrates

Simple Carbohydrates: Monosaccharides and Disaccharides

Complex Carbohydrates

### 23.4 Proteins and Amino Acids

Amino Acids: The Building Blocks of Proteins

Peptide Bonding between Amino Acids

### 23.5 Protein Structure

**Primary Structure** 



Secondary Structure

**Tertiary Structure** 

Quaternary Structure

# 23.6 Nucleic Acids: Blueprints for Proteins

The Basic Structure of Nucleic Acids

The Genetic Code

# 23.7 DNA Replication, the Double Helix, and Protein Synthesis

DNA Replication and the Double Helix

Protein Synthesis

Chemistry and Medicine The Human Genome Project

# Chapter in Review

Self-Assessment Quiz

**Terms** 

Concepts

**Learning Outcomes** 

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

# Chapter 24: Chemistry of the Nonmetals

24.1 Insulated Nanowires

24.2 The Main-Group Elements: Bonding and Properties

24.3 Silicates: The Most Abundant Matter in Earths Crust

Quartz

Aluminosilicates

Individual Silicate Units, Silicate Chains, and Silicate Sheets

### 24.4 Boron and Its Remarkable Structures

Elemental Boron

BoronHalogen Compounds: Trihalides

BoronOxygen Compounds

BoronHydrogen Compounds: Boranes



# 24.5 Carbon, Carbides, and Carbonates

**Amorphous Carbon** 

Carbides

Carbon Oxides

Carbonates

# 24.6 Nitrogen and Phosphorus: Essential Elements for Life

Elemental Nitrogen and Phosphorus

Nitrogen Compounds

Phosphorus Compounds

# 24.7 Oxygen

Elemental Oxygen

Uses for Oxygen

Oxides

Ozone

# 24.8 Sulfur: A Dangerous but Useful Element

Elemental Sulfur

Hydrogen Sulfide and Metal Sulfides

Sulfur Dioxide

Sulfuric Acid

# 24.9 Halogens: Reactive Elements with High Electronegativity

Elemental Fluorine and Hydrofluoric Acid

Elemental Chlorine

Halogen Compounds

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

Learning Outcomes

### **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work

Data Interpretation and Analysis



Answers to Conceptual Connections

# Chapter 25: Metals and Metallurgy

- 25.1 Vanadium: A Problem and an Opportunity
- 25.2 The General Properties and Natural Distribution of Metals
- 25.3 Metallurgical Processes

Separation

Pyrometallurgy

Hydrometallurgy

Electrometallurgy

Powder Metallurgy

# 25.4 Metal Structures and Alloys

Alloys

Substitutional Alloys

Alloys with Limited Solubility

Interstitial Alloys

# 25.5 Sources, Properties, and Products of Some of the 3d Transition Metals

**Titanium** 

Chromium

Manganese

Cobalt

Copper

Nickel

Zinc

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

**Equations and Relationships** 

Learning Outcomes

# **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems

Questions for Group Work



Data Interpretation and Analysis

**Answers to Conceptual Connections** 

# Chapter 26: Transition Metals and Coordination Compounds

26.1 The Colors of Rubies and Emeralds

# 26.2 Properties of Transition Metals

**Electron Configurations** 

Atomic Size

Ionization Energy

Electronegativity

Oxidation States

# 26.3 Coordination Compounds

Naming Coordination Compounds

### 26.4 Structure and Isomerization

Structural Isomerism

Stereoisomerism

# 26.5 Bonding in Coordination Compounds

Valence Bond Theory

Crystal Field Theory

# 26.6 Applications of Coordination Compounds

**Chelating Agents** 

Chemical Analysis

Coloring Agents

Biomolecules

Hemoglobin and Cytochrome C

# Chapter in Review

Self-Assessment Quiz

Terms

Concepts

Equations and Relationships

Learning Outcomes

# **Exercises**

**Review Questions** 

Problems by Topic

**Cumulative Problems** 

Challenge Problems

Conceptual Problems



Questions for Group Work

Data Interpretation and Analysis

Answers to Conceptual Connections

Appendix I: Common Mathematical Operations in Chemistry

Appendix II: Useful Data

Appendix III: Answers to Selected Exercises

Appendix IV: Answers to In-Chapter Practice Problems

Glossary

Photo and Text Credits

Index

Conversion Factors and Relationships

Selected Key Equations

