

University Physics

Volume 1

Fifteenth Edition in SI Units

Hugh D. Young • Roger A. Freedman

BRIEF CONTENTS

MEC	CHANICS		27	Magnetic Field and Magnetic Forces	906		
1	Units, Physical Quantities, and Vectors	29	28	Sources of Magnetic Field	946		
2	Motion Along a Straight Line	62	29	Electromagnetic Induction	981		
3	Motion in Two or Three Dimensions	94	30	Inductance	1016		
4	Newton's Laws of Motion	128	31	Alternating Current	1046		
5	Applying Newton's Laws	157	32 Electromagnetic Waves		1076		
6	Work and Kinetic Energy	199					
7	Potential Energy and Energy Conservation	229	OPTICS				
8	Momentum, Impulse, and Collisions	263	33	The Nature and Propagation of Light	1105		
9	Rotation of Rigid Bodies	300	34	34 Geometric Optics			
10	Dynamics of Rotational Motion	330	35	35 Interference			
11	Equilibrium and Elasticity	365	36 Diffraction		1213		
12	Fluid Mechanics	394	MODERN BUYCIOS				
13	Gravitation	423	MOI	MODERN PHYSICS			
14	Periodic Motion	457	37	Relativity	1245		
			38	Photons: Light Waves Behaving as Particles	1281		
WAVES/ACOUSTICS			39	Particles Behaving as Waves	1306		
15	Mechanical Waves	492	40	Quantum Mechanics I: Wave Functions	1348		
16	Sound and Hearing	529	41	Quantum Mechanics II: Atomic Structure	1387		
	-		42	Molecules and Condensed Matter	1434		
THERMODYNAMICS			43	Nuclear Physics	1467		
17	Temperature and Heat	569	44	Particle Physics and Cosmology	1508		
18	Thermal Properties of Matter	607					
19	The First Law of Thermodynamics	641					
20	The Second Law of Thermodynamics	670	APP	APPENDICES			
	CTROMAGNETISM			The International System of Units	A-1		
				Jnit Conversion Factors The British System of Units	A-3 A-3		
	Electric Charge and Electric Field	706	D U	Jseful Mathematical Relations	A-6		
22	Gauss's Law	746		E The Greek Alphabet F Periodic Table of the Elements A			
23	Electric Potential	775					
24	Capacitance and Dielectrics	809		Anguage to Odd Numbered Problems	A 11		
25	Current, Resistance, and Electromotive Force	840	Answers to Odd-Numbered Problems Credits		A-11 C-1		
26	Direct-Current Circuits	872		ndex	I-1		

University Physics, Volume 1 (Chapters 1-20), Global Edition

Table of Contents

r۸	nt	C_{α}	NA	r
"	111	\ .() V/ 🗀	ı

Title Page

Copyright Page

About the Authors

Preface

Acknowledgments

Applications

Detailed Contents

Mechanics

- 1 Units, Physical Quantities, and Vectors
 - 1.1 The Nature of Physics
 - 1.2 Solving Physics Problems
 - 1.3 Standards and Units
 - 1.4 Using and Converting Units
 - 1.5 Uncertainty and Significant Figures
 - 1.6 Estimates and Orders of Magnitude
 - 1.7 Vectors and Vector Addition
 - 1.8 Components of Vectors
 - 1.9 Unit Vectors
 - 1.10 Products of Vectors

Summary

Guided Practice

Questions/Exercises/Problems

2 Motion Along a Straight Line

- 2.1 Displacement, Time, and Average Velocity
- 2.2 Instantaneous Velocity
- 2.3 Average and Instantaneous Acceleration
- 2.4 Motion with Constant Acceleration
- 2.5 Freely Falling Objects

2.6 Velocity and Position by Integration

Summary

Guided Practice

Questions/Exercises/Problems

3 Motion in Two or Three Dimensions

- 3.1 Position and Velocity Vectors
- 3.2 The Acceleration Vector
- 3.3 Projectile Motion
- 3.4 Motion in a Circle
- 3.5 Relative Velocity

Summary

Guided Practice

Questions/Exercises/Problems

4 Newtons Laws of Motion

- 4.1 Force and Interactions
- 4.2 Newtons First Law
- 4.3 Newtons Second Law
- 4.4 Mass and Weight
- 4.5 Newtons Third Law
- 4.6 Free-Body Diagrams

Summary

Guided Practice

Questions/Exercises/Problems

5 Applying Newtons Laws

- 5.1 Using Newtons First Law: Particles in Equilibrium
- 5.2 Using Newtons Second Law: Dynamics of Particles
- 5.3 Friction Forces
- 5.4 Dynamics of Circular Motion
- 5.5 The Fundamental Forces of Nature

Summary

Guided Practice

Questions/Exercises/Problems

6 Work and Kinetic Energy

- 6.1 Work
- 6.2 Kinetic Energy and the WorkEnergy Theorem
- 6.3 Work and Energy with Varying Forces
- 6.4 Power

Summary

Guided Practice

Questions/Exercises/Problems

7 Potential Energy and Energy Conservation

- 7.1 Gravitational Potential Energy
- 7.2 Elastic Potential Energy
- 7.3 Conservative and Nonconservative Forces
- 7.4 Force and Potential Energy
- 7.5 Energy Diagrams

Summary

Guided Practice

Questions/Exercises/Problems

8 Momentum, Impulse, and Collisions

- 8.1 Momentum and Impulse
- 8.2 Conservation of Momentum
- 8.3 Momentum Conservation and Collisions
- 8.4 Elastic Collisions
- 8.5 Center of Mass
- 8.6 Rocket Propulsion

Summary

Guided Practice

Questions/Exercises/Problems

9 Rotation of Rigid Bodies

- 9.1 Angular Velocity and Acceleration
- 9.2 Rotation with Constant Angular Acceleration
- 9.3 Relating Linear and Angular Kinematics
- 9.4 Energy in Rotational Motion
- 9.5 Parallel-axis Theorem
- 9.6 Moment-of-inertia Calculations

Summary

Guided Practice

Questions/Exercises/Problems

10 Dynamics of Rotational Motion

- 10.1 Torque
- 10.2 Torque and Angular Acceleration for a Rigid Body
- 10.3 Rigid-Body Rotation About a Moving Axis
- 10.4 Work and Power in Rotational Motion

- 10.5 Angular Momentum
- 10.6 Conservation of Angular Momentum
- 10.7 Gyroscopes and Precession

Summary

Guided Practice

Questions/Exercises/Problems

11 Equilibrium and Elasticity

- 11.1 Conditions for Equilibrium
- 11.2 Center of Gravity
- 11.3 Solving Rigid-Body Equilibrium Problems
- 11.4 Stress, Strain, and Elastic Moduli
- 11.5 Elasticity and Plasticity

Summary

Guided Practice

Questions/Exercises/Problems

12 Fluid Mechanics

- 12.1 Gases, Liquids, and Density
- 12.2 Pressure in a Fluid
- 12.3 Buoyancy
- 12.4 Fluid Flow
- 12.5 Bernoullis Equation
- 12.6 Viscosity and Turbulence

Summary

Guided Practice

Questions/Exercises/Problems

13 Gravitation

- 13.1 Newtons Law of Gravitation
- 13.2 Weight
- 13.3 Gravitational Potential Energy
- 13.4 the Motion of Satellites
- 13.5 Keplers Laws and the Motion of Planets
- 13.6 Spherical Mass Distributions
- 13.7 Apparent Weight and the Earths Rotation
- 13.8 Black Holes

Summary

Guided Practice

Questions/Exercises/Problems

14 Periodic Motion

- 14.1 Describing Oscillation
- 14.2 Simple Harmonic Motion
- 14.3 Energy in Simple Harmonic Motion
- 14.4 Applications of Simple Harmonic Motion
- 14.5 the Simple Pendulum
- 14.6 the Physical Pendulum
- 14.7 Damped Oscillations
- 14.8 Forced Oscillations and Resonance

Summary

Guided Practice

Questions/Exercises/Problems

Waves/Acoustics

15 Mechanical Waves

- 15.1 Types of Mechanical Waves
- 15.2 Periodic Waves
- 15.3 Mathematical Description of a Wave
- 15.4 Speed of a Transverse Wave
- 15.5 Energy in Wave Motion
- 15.6 Wave Interference, Boundary Conditions, and Superposition
- 15.7 Standing Waves on a String
- 15.8 Normal Modes of a String

Summary

Guided Practice

Questions/Exercises/Problems

16 Sound and Hearing

- 16.1 Sound Waves
- 16.2 Speed of Sound Waves
- 16.3 Sound Intensity
- 16.4 Standing Sound Waves and Normal Modes
- 16.5 Resonance and Sound
- 16.6 Interference of Waves
- 16.7 Beats
- 16.8 The Doppler Effect
- 16.9 Shock Waves

Summary

Guided Practice

Questions/Exercises/Problems

Thermodynamics

17 Temperature and Heat

- 17.1 Temperature and Thermal Equilibrium
- 17.2 Thermometers and Temperature Scales
- 17.3 Thermal Expansion
- 17.4 Quantity of Heat
- 17.5 Calorimetry and Phase Changes
- 17.6 Mechanisms of Heat Transfer

Summary

Guided Practice

Questions/Exercises/Problems

18 Thermal Properties of Matter

- 18.1 Equations of State
- 18.2 Molecular Properties of Matter
- 18.3 Kinetic-Molecular Model of an Ideal Gas
- 18.4 Heat Capacities
- 18.5 Molecular Speeds
- 18.6 Phases of Matter

Summary

Guided Practice

Questions/Exercises/Problems

19 The First Law of Thermodynamics

- 19.1 Thermodynamic Systems
- 19.2 Work Done During Volume Changes
- 19.3 Paths Between Thermodynamic States
- 19.4 Internal Energy and the First Law of Thermodynamics
- 19.5 Kinds of Thermodynamic Processes
- 19.6 Internal Energy of an Ideal Gas
- 19.7 Heat Capacities of an Ideal Gas
- 19.8 Adiabatic Processes for an Ideal Gas

Summary

Guided Practice

Questions/Exercises/Problems

20 The Second Law of Thermodynamics

- 20.1 Directions of Thermodynamic Processes
- 20.2 Heat Engines
- 20.3 Internal-Combustion Engines
- 20.4 Refrigerators
- 20.5 The Second Law of Thermodynamics
- 20.6 The Carnot Cycle
- 20.7 Entropy
- 20.8 Microscopic Interpretation of Entropy

Summary

Guided Practice

Questions/Exercises/Problems

Appendix

- A The International System of Units
- **B Unit Conversion Factors**
- C The British System of Units
- D Useful Mathematical Relations
- E The Greek Alphabet
- F Periodic Table of the Elements
- **G Numerical Constants**

Answers to Odd-Numbered Problems

Credits

Index

Back Cover

