

Mechanical Behavior of Materials

Engineering Methods for Deformation, Fracture, and Fatigue

FIFTH EDITION

Norman E. Dowling Stephen L. Kampe Milo V. Kral

MATERIALS PROPERTIES LOCATOR

Table No. Page		Material Type	Data Listed		
2.2	57	Whiskers, fibers, wires	E, σ_u		
3.2	90	Metals	$E, \sigma_o, \sigma_u, 100\varepsilon_f, \%RA$		
3.3	91	Polymers	$E, \sigma_o, \sigma_f, 100\varepsilon_f$, Izod energy, T_d		
3.4	92	Ceramics, glasses, stone	$T_m, \rho, E, \sigma_u, \sigma_{uc}$		
3.5	93	SiC in Al composite	$E, \sigma_o, \sigma_u, 100\varepsilon_f$		
3.7	107	Metals	$ ilde{\sigma}_{fB}, ilde{arepsilon}_f, H, n, HB$		
3.8	108	Representative	E , σ_o or σ_u , ρ , cost		
4.1	134	Ceramics, glasses	E, σ_{fb}, HV		
5.2	166	Metals, polymers, ceramics	E, ν		
5.3	181	Fibers, epoxy, composites	E, G, ν, ρ		
7.1	266	Stone, concrete, gray iron	σ_u , σ_{uc} , C-M fitting constants		
8.1	300	Metals	K_{Ic} ; also σ_o , σ_u , $100\varepsilon_f$,% RA		
8.2	301	Polymers, ceramics	K_{Ic}		
9.1	383	Metals	σ_a - N_f constants; also σ_o , σ_u , $\tilde{\sigma}_{fB}$		
10.1	464	Metals	Fatigue limit estimates		
10.2	480	Metals	$S-N$ curve estimates at 10^3 cycles		
11.1	524	Steels by class	da/dN - ΔK constants		
11.2	535	Steels, aluminums	da/dN - ΔK constants (Walker); also K_{Ic} , σ_o		
11.3	538	Metals	da/dN - ΔK constants (Forman); also K_{Ic} , σ_{C}		
12.1	594	Metal alloys	K_{IEAC} , \dot{a} , K_{Ic}		
12.5	605	Solvents, polymers	δ_e, δ_p		
13.1	641	Steels, aluminums	E, H', n' ; also σ_o, σ_u		
15.1	727	Metals	ε_a - N_f constants; $E, H', n'; \sigma_o, \sigma_u, \tilde{\sigma}_{fB}, \%RA$		
16.3	802	Metals	L-M parameter constants		
16.4	816	Metals	σ - ε - t nonlinear creep constants		
B.5	881	Metals, stone, concrete	K_{Ic} and statistics; also σ_o or σ_{uc}		
C.1	886	Metals, alloys	T_m, ρ, E		
C.9	907	Polymers	T_g, T_m		

Explanation of Symbols for Materials Properties

Zitp title	action of Eginoons for interesting 1 reperties		
à	Crack velocity	T_m	Melting temperature
E	Elastic modulus	δ_e, δ_p	Solubility parameters
G	Shear modulus	$100\hat{\varepsilon}_f$	Percent elongation
H, n	Monotonic σ - ε constants	$ ilde{arepsilon}_f$	True fracture strain
H', n'	Cyclic σ - ε constants	ν	Poisson's ratio
HB	Brinell hardness	ρ	Density
HV	Vickers hardness	σ_f	Engineering fracture strength
K_{Ic}	Plane strain fracture toughness	$ ilde{\sigma}_{fB}$	True fracture strength
K_{IEAC}	Environmental cracking threshold	σ_{fb}	Bend strength
%RA	Percent reduction in area	σ_o	Yield strength
T_d	Heat deflection temperature	σ_u	Ultimate tensile strength
T_g	Glass transition temperature	σ_{uc}	Ultimate compressive strength

Mechanical Behavior of Materials, Global Edition

Table of Contents

F	r۸	nt	C.c	ver

Title Page

Copyright Page

Contents

Preface

Acknowledgments

- 1 Introduction
 - 1.1 Introduction
 - 1.2 Types of Material Failure
 - 1.3 Design and Materials Selection
 - 1.4 Technological Challenge
 - 1.5 Economic Importance of Fracture
 - 1.6 Summary

References

Problems and Questions

- 2 Structure, Defects, and Deformation in Materials
 - 2.1 Introduction
 - 2.2 Bonding in Solids
 - 2.3 Structure in Crystalline Materials
 - 2.4 Defects in Materials
 - 2.5 Elastic Deformation and Theoretical Strength

- 2.6 Inelastic Deformation
- 2.7 Summary

References

Problems and Questions

- 3 Mechanical Testing: Tension Test and StressStrain Mechanisms
 - 3.1 Introduction
 - 3.2 Introduction to Tension Test
 - 3.3 Engineering StressStrain Properties
 - 3.4 Materials Science Description of Tensile Behavior
 - 3.5 Trends in Tensile Behavior
 - 3.6 True StressStrain Interpretation of Tension Test
 - 3.7 Materials Selection for Engineering Components
 - 3.8 Summary

References

Problems and Questions

- 4 Mechanical Testing: Additional Basic Tests
 - 4.1 Introduction
 - 4.2 Compression Test
 - 4.3 Hardness Tests
 - 4.4 Notch-Impact Tests
 - 4.5 Bending and Torsion Tests
 - 4.6 Summary

References

Problems and Questions

5 StressStrain Relationships and Behavior

- 5.1 Introduction
- 5.2 Models for Deformation Behavior
- 5.3 Elastic Deformation
- 5.4 Anisotropic Materials
- 5.5 Summary

References

Problems and Questions

6 Review of Complex and Principal States of Stress and Strain

- 6.1 Introduction
- 6.2 Plane Stress
- 6.3 Principal Stresses and the Maximum Shear Stress
- 6.4 Three-Dimensional States of Stress
- 6.5 Stresses on the Octahedral Planes
- 6.6 Complex States of Strain
- 6.7 Summary

References

Problems and Questions

7 Yielding and Fracture Under Combined Stresses

- 7.1 Introduction
- 7.2 General Form of Failure Criteria
- 7.3 Maximum Normal Stress Fracture Criterion
- 7.4 Maximum Shear Stress Yield Criterion
- 7.5 Octahedral Shear Stress Yield Criterion
- 7.6 Discussion of the Basic Failure Criteria
- 7.7 CoulombMohr Fracture Criterion
- 7.8 Modified Mohr Fracture Criterion

- 7.9 Additional Comments on Failure Criteria
- 7.10 Summary

References

Problems and Questions

- 8 Fracture of Cracked Members
 - 8.1 Introduction
 - 8.2 Preliminary Discussion
 - 8.3 Mathematical Concepts
 - 8.4 Application of K to Design and Analysis
 - 8.5 Additional Topics on Application of K
 - 8.6 Fracture Toughness Values and Trends
 - 8.7 Plastic Zone Size, and Plasticity Limitations on LEFM
 - 8.8 Discussion of Fracture Toughness Testing
 - 8.9 Extensions of Fracture Mechanics Beyond Linear Elasticity
 - 8.10 Summary

References

Problems and Questions

- 9 Fatigue of Materials: Introduction and Stress-based Approach
 - 9.1 Introduction
 - 9.2 Definitions and Concepts
 - 9.3 Sources of Cyclic Loading
 - 9.4 Fatigue Testing
 - 9.5 The Physical Nature of Fatigue Damage
 - 9.6 Trends in S-N Curves
 - 9.7 Mean Stresses
 - 9.8 Multiaxial Stresses

- 9.9 Variable Amplitude Loading
- 9.10 Summary
- References
- **Problems and Questions**
- 10 Stress-based Approach to Fatigue: Notched Members
 - 10.1 Introduction
 - 10.2 Notch Effects
 - 10.3 Notch Sensitivity and Empirical Estimates of kf
 - 10.4 Estimating Long-Life Fatigue Strengths (Fatigue Limits)
 - 10.5 Notch Effects at Intermediate and Short Lives
 - 10.6 Combined Effects of Notches and Mean Stress
 - 10.7 Estimating S-N Curves
 - 10.8 Use of Component S-N Data
 - 10.9 Designing to Avoid Fatigue Failure
 - 10.10 Discussion
 - 10.11 Summary
 - References
 - **Problems and Questions**
- 11 Fatigue Crack Growth
 - 11.1 Introduction
 - 11.2 Preliminary Discussion
 - 11.3 Fatigue Crack Growth Rate Testing
 - 11.4 Effects of R = Smin/Smax on Fatigue Crack Growth
 - 11.5 Trends in Fatigue Crack Growth Behavior
 - 11.6 Life Estimates for Constant Amplitude Loading
 - 11.7 Life Estimates for Variable Amplitude Loading

- 11.8 Design Considerations
- 11.9 Plasticity Aspects and Limitations of LEFM for Fatigue Crack Growth
- 11.10 Summary

References

Problems and Questions

12 Environmentally Assisted Cracking

- 12.1 Introduction
- 12.2 Definitions, Concepts, and Analysis
- 12.3 EAC in Metals: Basic Mechanisms
- 12.4 Hydrogen-Induced Embrittlement
- 12.5 Liquid Metal Embrittlement
- 12.6 EAC of Polymers
- 12.7 EAC of Glasses and Ceramics
- 12.8 Additional Comments and Preventative Measures

References

Problems and Questions

13 Plastic Deformation Behavior and Models for Materials

- 13.1 Introduction
- 13.2 StressStrain Curves
- 13.3 Three-Dimensional StressStrain Relationships
- 13.4 Unloading and Cyclic Loading Behavior from Rheological Models
- 13.5 Cyclic StressStrain Behavior of Real Materials
- 13.6 Summary

References

Problems and Questions

14 StressStrain Analysis of Plastically Deforming Members

- 14.1 Introduction
- 14.2 Plasticity in Bending
- 14.3 Residual Stresses and Strains for Bending
- 14.4 Plasticity of Circular Shafts in Torsion
- 14.5 Notched Members
- 14.6 Cyclic Loading
- 14.7 Summary

References

Problems and Questions

15 Strain-Based Approach to Fatigue

- 15.1 Introduction
- 15.2 Strain Versus Life Curves
- 15.3 Mean Stress Effects
- 15.4 Multiaxial Stress Effects
- 15.5 Life Estimates for Structural Components
- 15.6 Additional Discussion
- 15.7 Summary

References

Problems and Questions

16 Time-Dependent Behavior: Creep and Damping

- 16.1 Introduction
- 16.2 Creep Testing
- 16.3 Physical Mechanisms of Creep
- 16.4 TimeTemperature Parameters and Life Estimates
- 16.5 Creep Failure under Varying Stress

- 16.6 StressStrainTime Relationships
- 16.7 Creep Deformation under Varying Stress
- 16.8 Creep Deformation under Multiaxial Stress
- 16.9 Component StressStrain Analysis
- 16.10 Energy Dissipation (Damping) in Materials
- 16.11 Summary

References

Problems and Questions

Appendix A Review of Selected Topics from Mechanics of Materials

- A.1 Introduction
- A.2 Basic Formulas for Stresses and Deflections
- A.3 Properties of Areas
- A.4 Shears, Moments, and Deflections in Beams
- A.5 Stresses in Pressure Vessels, Tubes, and Discs
- A.6 Elastic Stress Concentration Factors for Notches
- A.7 Fully Plastic Yielding Loads

References

Appendix B Statistical Variation in Materials Properties

- **B.1** Introduction
- B.2 Mean and Standard Deviation
- B.3 Normal or Gaussian Distribution
- **B.4 Typical Variation in Materials Properties**
- **B.5 One-Sided Tolerance Limits**
- **B.6 Discussion**

References

Appendix C A Survey of Engineering Materials

- C.1 Introduction
- C.2 Alloying and Processing of Metals
- C.3 Irons and Steels
- C.4 Nonferrous Metals
- C.5 Polymers
- C.6 Ceramics and Glasses
- C.7 Composite Materials
- C.8 Summary

References

Answers for Selected Problems and Questions

Bibliography

Index

Back Cover