

THIRTEENTH EDITION GLOBAL EDITION

MODERN DATABASE MANAGEMENT

Jeffrey A. Hoffer *University of Dayton*

V. Ramesh *Indiana University*

Heikki Topi Bentley University

Modern Database Management, Global Edition

Table of Contents

-	`				
(1	1	١/	Δ	r

Title Page

Copyright Page

Brief Contents

Contents

Preface

Acknowledgments

Preface

Part I: The Context of Database Management

An Overview of Part I

Chapter 1: The Database Environment and Development Process

Learning Objectives

Data Matter!

Introduction

Basic Concepts and Definitions

Data

Data versus Information

Metadata

Traditional File Processing Systems

File Processing Systems at Pine Valley Furniture Company

Disadvantages of File Processing Systems

Program-Data Dependence

Duplication of Data

Limited Data Sharing

Lengthy Development Times

Excessive Program Maintenance

The Database Approach

Data Models

Entities

Relationships

Relational Databases

Database Management Systems

Advantages of the Database Approach

Program-Data Independence Planned Data Redundancy Improved Data Consistency Improved Data Sharing Increased Productivity of Application Development Enforcement of Standards Improved Data Quality Improved Data Accessibility and Responsiveness Reduced Program Maintenance Improved Decision Support Cautions about Database Benefits Costs and Risks of the Database Approach New, Specialized Personnel Installation and Management Cost and Complexity Conversion Costs Need for Explicit Backup and Recovery Organizational Conflict

Integrated Data Management Framework

Components of the Database Environment

The Database Development Process

Systems Development Life Cycle

PlanningEnterprise Modeling

PlanningConceptual Data Modeling

AnalysisConceptual Data Modeling

DesignLogical Database Design

DesignPhysical Database Design and Definition

ImplementationDatabase Implementation

MaintenanceDatabase Maintenance

Alternative Information Systems Development Approaches

Three-Schema Architecture for Database Development

Managing the People Involved in Database Development

Evolution of Database Systems

1960s

1970s

1980s

1990s

2000 and Beyond

The Range of Database Applications

Personal Databases

Departmental Multi-Tiered Client/Server Databases

Enterprise Applications

Enterprise Systems

Data Warehouses

Data Lake

Developing a Database Application for Pine Valley Furniture Company

Database Evolution at Pine Valley Furniture Company

Project Planning

Analyzing Database Requirements

Designing the Database

Using the Database

Administering the Database

Future of Databases at Pine Valley

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Part II: Database Analysis and Logical Design

An Overview of Part II

Chapter 2: Modeling Data in the Organization

Learning Objectives

Introduction

The E-R Model: An Overview

Sample E-R Diagram

E-R Model Notation

Modeling the Rules of the Organization

Overview of Business Rules

The Business Rules Paradigm

Scope of Business Rules

Good Business Rules

Gathering Business Rules

Data Names and Definitions

Data Names

Data Definitions

Good Data Definitions

Modeling Entities and Attributes

Entities

Entity Type versus Entity Instance

Entity Type versus System Input, Output, or User

Strong versus Weak Entity Types

Naming and Defining Entity Types

Attributes

Required versus Optional Attributes

Simple versus Composite Attributes

Single-valued versus Multivalued Attributes

Stored versus Derived Attributes

Identifier Attribute

Naming and Defining Attributes

Modeling Relationships

Basic Concepts and Definitions in Relationships

Attributes on Relationships

Associative Entities

Degree of a Relationship

Unary Relationship

Binary Relationship

Ternary Relationship

Attributes or Entity?

Cardinality Constraints

Minimum Cardinality

Maximum Cardinality

Some Examples of Relationships and Their Cardinalities

A Ternary Relationship

Modeling Time-Dependent Data

Modeling Multiple Relationships Between Entity Types

Naming and Defining Relationships

E-R Modeling Example: Pine Valley Furniture Company

Database Processing At Pine Valley Furniture

Showing Product Information

Showing Product Line Information

Showing Customer Order Status

Showing Product Sales

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Chapter 3: The Enhanced E-R Model

Learning Objectives

Introduction

Representing Supertypes and Subtypes

Basic Concepts and Notation

An Example of a Supertype/Subtype Relationship

Attribute Inheritance

When to Use Supertype/Subtype Relationships

Representing Specialization and Generalization

Generalization

Specialization

Combining Specialization and Generalization

Specifying Constraints in Supertype/Subtype Relationships

Specifying Completeness Constraints

Total Specialization Rule

Partial Specialization Rule

Specifying Disjointness Constraints

Disjoint Rule

Overlap Rule

Defining Subtype Discriminators

Disjoint Subtypes

Overlapping Subtypes

Defining Supertype/Subtype Hierarchies

An Example of a Supertype/Subtype Hierarchy

Summary of Supertype/Subtype Hierarchies

EER Modeling Example: Pine Valley Furniture Company

Entity Clustering

Packaged Data Models

A Revised Data Modeling Process with Packaged Data Models

Packaged Data Model Examples

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Chapter 4: Logical Database Design and the Relational Model

Learning Objectives

Introduction

The Relational Data Model

Basic Definitions

Relational Data Structure

Relational Keys

Properties of Relations

Removing Multivalued Attributes from Tables

Sample Database

Integrity Constraints

Domain Constraints

Entity Integrity

Referential Integrity

Creating Relational Tables

Well-Structured Relations

Transforming EER Diagrams into Relations

Step 1: Map Regular Entities

Composite Attributes

Multivalued Attributes

Step 2: Map Weak Entities

When to Create a Surrogate Key

Step 3: Map Binary Relationships

Map Binary One-to-Many Relationships

Map Binary Many-to-Many Relationships

Map Binary One-to-One Relationships

Step 4: Map Associative Entities

Identifier not Assigned

Identifier Assigned

Step 5: Map Unary Relationships

Unary One-to-Many Relationships

Unary Many-to-Many Relationships

Step 6: Map Ternary (and n-ary) Relationships

Step 7: Map Supertype/Subtype Relationships

Summary of EER-to-Relational Transformations

Introduction to Normalization

Steps in Normalization

Functional Dependencies and Keys

Determinants

Candidate Keys

Normalization Example: Pine Valley Furniture Company

Step 0: Represent the View in Tabular Form

Step 1: Convert to First Normal Form

Remove Repeating Groups

Select the Primary Key

Anomalies in 1NF

Step 2: Convert to Second Normal Form

Step 3: Convert to Third Normal Form

Removing Transitive Dependencies

Determinants and Normalization

Step 4: Further Normalization

Merging Relations

An Example

View Integration Problems

Synonyms

Homonyms

Transitive Dependencies

Supertype/Subtype Relationships

A Final Step for Defining Relational Keys

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Part III: Database Implementation and Use

An Overview of Part III

Chapter 5: Introduction to SQL

Learning Objectives

Introduction

Origins of the SQL Standard

The SQL Environment

SQL Data Types

Defining A Database in SQL

Generating SQL Database Definitions

Creating Tables

Creating Data Integrity Controls

Changing Table Definitions

Removing Tables

Inserting, Updating, and Deleting Data

Batch Input

Deleting Database Contents

Updating Database Contents

Internal Schema Definition in RDBMSs

Creating Indexes

Processing Single Tables

Clauses of the SELECT Statement

Using Expressions

Using Functions

Using Wildcards

Using Comparison Operators

Using Null Values

Using Boolean Operators

Using Ranges for Qualification

Using Distinct Values

Using IN and NOT IN with Lists

Sorting Results: The ORDER BY Clause

Categorizing Results: The GROUP BY Clause

Qualifying Results by Categories: The HAVING Clause

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Chapter 6: Advanced SQL

Learning Objectives

Introduction

Processing Multiple Tables

Equi-Join

Natural Join

Outer Join

Sample Join Involving Four Tables

Self-Join

Subqueries

Correlated Subqueries

Using Derived Tables

Combinings Queries

Conditional Expressions

More Complicated SQL Queries

Tips for Developing Queries

Guidelines for Better Query Design

Using and Defining Views

Materialized Views

Triggers and Routines

Triggers

Routines and Other Programming Extensions

Example Routine in Oracles PL/SQL

Data Dictionary Facilities

Recent Enhancements and Extensions to SQL

Analytical and OLAP Functions

New Temporal Features in SQL

Other Enhancements

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Chapter 7: Databases in Applications

Learning Objectives

Location, Location!

Introduction

Client/Server Architectures

Databases in Three-Tier Applications

A Java Web Application

A Python Web Application

Key Considerations in Three-Tier Applications

Stored Procedures

Transactions

Database Connections

Key Benefits of Three-Tier Applications

Transaction Integrity

Controlling Concurrent Access

The Problem of Lost Updates

Serializability

Locking Mechanisms

Locking Level

Types of Locks

Deadlock

Managing Deadlock

Versioning

Managing Data Security in an Application Context

Threats to Data Security

Establishing Client/Server Security

Server Security

Network Security

Application Security Issues in Three-Tier Client/Server Environments

Data Privacy

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Chapter 8: Physical Database Design and Database Infrastructure

Learning Objectives

Introduction

The Physical Database Design Process

Who Is Responsible for Physical Database Design?

Physical Database Design as a Basis for Regulatory Compliance

SOX and Databases

IT Change Management

Logical Access to Data

IT Operations

Data Volume and Usage Analysis

Designing Fields

Choosing Data Types

Coding Techniques

Controlling Data Integrity

Handling Missing Data

Denormalizing and Partitioning Data

Denormalization

Opportunities for and Types of Denormalization

Denormalize with Caution

Partitioning

Designing Physical Database Files

File Organizations

Heap File Organization

Sequential File Organizations

Indexed File Organizations

Hashed File Organizations

Clustering Files

Designing Controls for Files

Using and Selecting Indexes

Creating a Unique Key Index

Creating a Secondary (Nonunique) Key Index

When to Use Indexes

Designing a Database for Optimal Query Performance

Parallel Query Processing

Overriding Automatic Query Optimization

Data Dictionaries and Repositories

Data Dictionary

Repositories

Database Software Data Security Features

Views

Integrity Controls

Authorization Rules

User-Defined Procedures

Encryption

Authentication Schemes

Passwords

Strong Authentication

Database Backup and Recovery

Basic Recovery Facilities

Backup Facilities

Journalizing Facilities

Checkpoint Facility

Recovery Manager

Recovery and Restart Procedures

Disk Mirroring

Restore/Rerun

Backward Recovery

Forward Recovery

Types of Database Failure

Aborted Transactions

Incorrect Data

System Failure

Database Destruction

Disaster Recovery

Cloud-Based Database Infrastructure

Cloud-Based Models for Providing Data Management Services 407

Benefits and Downsides of Using Cloud-Based Management Services 408

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Case: Forondo Artist Management Excellence Inc.

Part IV: Advanced Database Topics

An Overview of Part IV

Chapter 9: Data Warehousing and Data Integration

Learning Objectives

Introduction

Basic Concepts of Data Warehousing

A Brief History of Data Warehousing

The Need for Data Warehousing

Need for a Company-Wide View

Need to Separate Operational and Informational Systems

Data Warehouse Architectures

Independent Data Mart Data Warehousing Environment

Dependent Data Mart and Operational Data Store Architecture: A Three-Level Approach

Logical Data Mart and Real-Time Data Warehouse Architecture

Three-Layer Data Architecture

Role of the Enterprise Data Model

Role of Metadata

Some Characteristics of Data Warehouse Data

Status versus Event Data

Transient versus Periodic Data

An Example of Transient and Periodic Data

Transient Data

Periodic Data

Other Data Warehouse Changes

The Derived Data Layer

Characteristics of Derived Data

The Star Schema

Fact Tables and Dimension Tables

Example Star Schema

Surrogate Key

Grain of the Fact Table

Duration of the Database

Size of the Fact Table

Modeling Date and Time

Variations of the Star Schema

Multiple Fact Tables

Factless Fact Tables

Normalizing Dimension Tables

Multivalued Dimensions

Hierarchies

Slowly Changing Dimensions

Determining Dimensions and Facts

Data Integration: An Overview

General Approaches to Data Integration

Data Federation

Data Propagation

Data Integration for Data Warehousing: The Reconciled Data Layer

Characteristics of Data after ETL

The ETL Process

Mapping and Metadata Management

Extract

Cleanse

Load and Index

Data Transformation

Data Transformation Functions

Record-Level Functions

Field-Level Functions

Data Warehouse Administration

The Future of Data Warehousing: Integration with Other Forms of Data Management and Analytics

Speed of Processing

Moving the Data Warehouse into the Cloud

Dealing with Unstructured Data

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading

Web Resources

Chapter 10: Big Data Technologies

Learning Objectives

Introduction

Moving Beyond Transactional and Data Warehousing Databases

Big Data

NoSQL

Classification of NoSQL DBMSs

Key-Value Stores

Document Stores

Wide-Column Stores

Graph-Oriented Databases

NoSQL Examples

Redis

MongoDB

Apache Cassandra

Neo4j

A NoSQL Example: MongoDB

Documents

Collections

Relationships

Querying MongoDB

Impact of NoSQL on Database Professionals

Hadoop

Components of Hadoop

The Hadoop Distributed File System (HDFS)

MapReduce

Pig

Hive

HBase

A Practical Introduction to Pig

Loading Data

Transforming Data

A Practical Introduction to Hive

Creating a Table

Loading Data into the Table

Processing the Data

Integrated Analytics and Data Science Platforms

HP HAVEn

Teradata Aster

IBM Big Data Platform

Putting It All Together: Integrated Data Architecture

Summary

Key Terms

Review Questions

Problems and Exercises

References

Further Reading

Web Resources

Chapter 11: Analytics and Its Implications

Learning Objectives

Introduction

Analytics

Types of Analytics

Use of Descriptive Analytics

SQL OLAP Querying

OLAP Tools

Data Visualization

Business Performance Management and Dashboards

Use of Predictive Analytics

Data Mining Tools

Examples of Predictive Analytics

Use of Prescriptive Analytics

Key User Tools for Analytics

Analytical and OLAP Functions

R 524

Python

Apache Spark

Data Management Infrastructure for Analytics

Impact of Big Data and Analytics

Applications of Big Data and Analytics

Business

E-Government and Politics

Science and Technology

Smart Health and Well-Being

Security and Public Safety

Implications of Big Data Analytics and Decision Making

Personal Privacy versus Collective Benefits

Ownership and Access

Quality and Reuse of Data and Algorithms

Transparency and Validation

Changing Nature of Work

Demands for Workforce Capabilities and Education

Summary

Key Terms

Review Questions

Problems and Exercises

References

Further Reading

Chapter 12: Data and Database Administration with Focus on Data Quality

Learning Objectives

Introduction

Overview of Data and Database Administration

Data Administration

Database Administration

Traditional Database Administration

Trends in Database Administration

Evolving Data Administration Roles

The Open Source Movement and Database Management

Data Governance

Managing Data Quality

Characteristics of Quality Data

External Data Sources

Redundant Data Storage and Inconsistent Metadata

Data Entry Problems

Lack of Organizational Commitment

Data Quality Improvement

Get the Business Buy-In

Conduct a Data Quality Audit

Establish a Data Stewardship Program

Improve Data Capture Processes

Apply Modern Data Management Principles and Technology

Apply TQM Principles and Practices

Summary of Data Quality

Data Availability

Costs of Downtime

Measures to Ensure Availability

Hardware Failures

Loss or Corruption of Data

Human Error

Maintenance Downtime

Network-Related Problems

Master Data Management

Summary

Key Terms

Review Questions

Problems and Exercises

Field Exercises

References

Further Reading
Web Resources
Glossary of Acronyms
Glossary of Terms
Index

