

A First Course in Statistics

TWELFTH EDITION

James McClave • Terry Sincich

APPLET CORRELATION

Applet	Concept Illustrated	Description	Applet Activity
Sample from a population	Assesses how well a sample represents the population and the role that sample size plays in the process.	Produces random sample from population from specified sample size and population distribution shape. Reports mean, median, and standard deviation; applet creates plot of sample.	4.4 , 216; 4.6 , 231
Sampling distributions	Compares means and standard deviations of distributions; assesses effect of sample size; illustrates unbiasedness.	Simulates repeatedly choosing samples of a fixed size <i>n</i> from a population with specified sample size, number of samples, and shape of population distribution. Applet reports means, medians, and standard deviations; creates plots for both.	4.7, 260; 4.8 , 260
Random numbers	Uses a random number generator to determine the experimental units to be included in a sample.	Generates random numbers from a range of integers specified by the user.	1.1 , 43; 1.2 , 44; 3.6 , 183; 4.1 , 202
Long-run probability de	monstrations illustrate the concept that theoretic	cal probabilities are long-run experimental proba	bilities.
Simulating probability of rolling a 6	Investigates relationship between theoretical and experimental probabilities of rolling 6 as number of die rolls increases.	Reports and creates frequency histogram for each outcome of each simulated roll of a fair die. Students specify number of rolls; applet calculates and plots proportion of 6s.	3.1 , 151; 3.3 , 162; 3.4 , 163; 3.5 , 177
Simulating probability of rolling a 3 or 4	Investigates relationship between theoretical and experimental probabilities of rolling 3 or 4 as number of die rolls increases.	Reports outcome of each simulated roll of a fair die; creates frequency histogram for outcomes. Students specify number of rolls; applet calculates and plots proportion of 3s and 4s.	3.3 , 162; 3.4 , 163
Simulating the probability of heads: fair coin	Investigates relationship between theoretical and experimental probabilities of getting heads as number of fair coin flips increases.	Reports outcome of each fair coin flip and creates a bar graph for outcomes. Students specify number of flips; applet calculates and plots proportion of heads.	3.2 , 151; 4.2 , 203
Simulating probability of heads: unfair coin $(P(H) = .2)$	Investigates relationship between theoretical and experimental probabilities of getting heads as number of unfair coin flips increases.	Reports outcome of each flip for a coin where heads is less likely to occur than tails and creates a bar graph for outcomes. Students specify number of flips; applet calculates and plots the proportion of heads.	4.3 , 216
Simulating probability of heads: unfair coin $(P(H) = .8)$	Investigates relationship between theoretical and experimental probabilities of getting heads as number of unfair coin flips increases.	Reports outcome of each flip for a coin where heads is more likely to occur than tails and creates a bar graph for outcomes. Students specify number of flips; applet calculates and plots the proportion of heads.	4.3 , 216
Simulating the stock market	Theoretical probabilities are long run experimental probabilities.	Simulates stock market fluctuation. Students specify number of days; applet reports whether stock market goes up or down daily and creates a bar graph for outcomes. Calculates and plots proportion of simulated days stock market goes up.	4.5 , 216
Mean versus median	Investigates how skewedness and outliers affect measures of central tendency.	Students visualize relationship between mean and median by adding and deleting data points; applet automatically updates mean and median.	2.1 , 85; 2.2 , 85; 2.3 , 85

First Course in Statistics, A, Global Edition

Table of Contents

Front Cover

Applet Correlation

Title Page

Copyright Page

Contents

Preface

Applications Index

Chapter 1 Statistics, Data, and Statistical Thinking

- 1.1 The Science of Statistics
- 1.2 Types of Statistical Applications
- 1.3 Fundamental Elements of Statistics
- 1.4 Types of Data
- 1.5 Collecting Data: Sampling and Related Issues
- 1.6 The Role of Statistics in Critical Thinking and Ethics

Statistics in Action: Social Media Network UsageAre You Linked In?

Using Technology: MINITAB: Accessing and Listing Data

Chapter 2 Methods for Describing Sets of Data

- 2.1 Describing Qualitative Data
- 2.2 Graphical Methods for Describing Quantitative Data
- 2.3 Numerical Measures of Central Tendency
- 2.4 Numerical Measures of Variability
- 2.5 Using The Mean and Standard Deviation to Describe Data
- 2.6 Numerical Measures of Relative Standing
- 2.7 Methods for Detecting Outliers: Box Plots and z-Scores
- 2.8 Graphing Bivariate Relationships (Optional)
- 2.9 Distorting the Truth with Descriptive Statistics

Statistics in Action: Body Image Dissatisfaction: Real or Imagined?

Using Technology: MINITAB: Describing Data

TI-83/TI84 Plus Graphing Calculator: Describing Data

Chapter 3 Probability

- 3.1 Events, Sample Spaces, and Probability
- 3.2 Unions and Intersections
- 3.3 Complementary Events
- 3.4 The Additive Rule and Mutually Exclusive Events
- 3.5 Conditional Probability
- 3.6 The Multiplicative Rule and Independent Events

Statistics in Action: Lotto Buster! Can You Improve Your Chance of Winning?

Using Technology: TI-83/TI-84 Plus Graphing Calculator: Combinations and Permutations

Chapter 4 Random Variables and Probability Distributions

- 4.1 Two Types of Random Variables
- 4.2 Probability Distributions for Discrete Random Variables
- 4.3 The Binomial Random Variable
- 4.4 Probability Distributions for Continuous Random Variables
- 4.5 The Normal Distribution
- 4.6 Descriptive Methods for Assessing Normality
- 4.7 Approximating a Binomial Distribution with a Normal Distribution (Optional)
- 4.8 Sampling Distributions
- 4.9 The Sampling Distribution of x and the Central Limit Theorem

Statistics in Action: Super Weapons DevelopmentIs the Hit Ratio Optimized?

Using Technology: MINITAB: Binomial Probabilities, Normal Probability, and Simulated Sampling Distribution

Chapter 5 Inferences Based on a SingleSample

- 5.1 Identifying and Estimating the Target Parameter
- 5.2 Confidence Interval for a Population Mean: Normal (z) Statistic
- 5.3 Confidence Interval for a Population Mean: Students t-Statistic
- 5.4 Large-Sample Confidence Interval for a Population Proportion
- 5.5 Determining the Sample Size
- 5.6 Confidence Interval for a Population Variance (Optional)

Statistics in Action: Medicare Fraud Investigations

Using Technology: MINITAB: Confidence Intervals

TI-83/TI-84 Plus Graphing Calculator: Confidence Intervals

Chapter 6 Inferences Based on a Single Sample Sample

- 6.1 The Elements of a Test of Hypothesis
- 6.2 Formulating Hypotheses and Setting Up the Rejection Region
- 6.3 Observed Significance Levels:p-Values
- 6.4 Test Of Hypothesis about a Population Mean: Normal (z) Statistic
- 6.5 Test of Hypothesis about a Population Mean: Students t-Statistic
- 6.6 Large-Sample Test of Hypothesis about a Population Proportion
- 6.7 Test of Hypothesis about a Population Variance (Optional)
- 6.8 A Nonparametric Test about a Population Median (Optional)

Statistics in Action: Diary of a KLEENEX® UserHow Many Tissues in a Box?

Using Technology: MINITAB: Tests of Hypotheses

TI-83/TI-84 Plus Graphing Calculator: Tests of Hypotheses

Chapter 7 Comparing Population Means

- 7.1 Identifying the Target Parameter
- 7.2 Comparing Two Population Means: Independent Sampling
- 7.3 Comparing Two Population Means: Paired Difference Experiments
- 7.4 Determining the Sample Size
- 7.5 A Nonparametric Test for Comparing Two Populations: Independent Samples (Optional)
- 7.6 A Nonparametric Test for Comparing Two Populations: Paired Difference Experiment (Optional)
- 7.7 Comparing Three or More Population Means: Analysis of Variance (Optional)

Statistics in Action: ZixIt Corp. v. Visa USA Inc.A Libel Case

Using Technology: MINITAB: Comparing Means

TI-83/TI-84 Plus Graphing Calculator: Comparing Means

Chapter 8 Comparing Population Proportions

- 8.1 Comparing Two Population Proportions: Independent Sampling
- 8.2 Determining the Sample Size
- 8.3 Testing Category Probabilities: Multinomial Experiment
- 8.4 Testing Categorical Probabilities: Two-Way (Contingency) Table

Statistics in Action: The Case of the Ghoulish Transplant Tissue

Using Technology: MINITAB: Categorized Data Analysis

TI-83/TI-84 Plus Graphing Calculator: Categorical Data Analyses

Chapter 9 Simple Linear Regression

- 9.1 Probabilistic Models
- 9.2 Fitting The Model: The Least Squares Approach
- 9.3 Model Assumptions
- 9.4 Assessing The Utility of the Model: Making Inferences About The Slope b1
- 9.5 The Coefficients of Correlation and Determination
- 9.6 Using the Model for Estimation and Prediction
- 9.7 A Complete Example
- 9.8 A Nonparametric Test for Correlation (Optional)

Statistics in Action: Can Dowsers Really Detect Water?

Using Technology: MINITAB: Simple Linear Regression

TI-83/TI-84 Plus Graphing Calculator: Simple Linear Regression

Appendix A: Summation Notation

Appendix B: Tables

Table I Binomial Probabilities

Table II Normal Curve Areas

Table III Critical Values of t

Table IV Critical Values of x2

Table V Critical Values of TL and TU for the Wilcoxon Rank Sum Test

Table VI Critical Values of T0 in the Wilcoxon Signed Rank Test

Table VII Percentage Points of the F-Distribution, a = .10

Table VIII Percentage Points of the F-Distribution, a = .05

Table IX Percentage Points of the F-Distribution, a = .025

Table X Percentage Points of the F-Distribution, a = .01

Table XI Critical Values of Spearmans Rank Correlation Coefficient

Appendix C: Calculation Formulas for Analysis of Variance (independent Sampling)

Short Answers to Selected Odd-Numbered Exercises

Index

Credits

Selected Formulas

Back Cover

