

The Nature and Properties of Soils

FIFTEENTH EDITION

Ray R. Weil • Nyle C. Brady

THE NATURE AND PROPERTIES OF SOILS

Nature and Properties of Soils, The, Global Edition

Table of Contents

C	οv	er
$\mathbf{\mathcal{C}}$	υv	CI

Title Page

Copyright Page

Contents

Preface

- 1 The Soils Around Us
 - 1.1 What Ecosystem Services Do Soils Perform?
 - 1.2 How Do Soils Support Plant Growth?
 - 1.3 How Do Soils Regulate Water Supplies?
 - 1.4 How Do Soils Recycle Raw Materials?
 - 1.5 How Do Soils Modify the Atmosphere?
 - 1.6 What Lives in the Soil Habitat?
 - 1.7 Soil as an Engineering Medium
 - 1.8 The Pedosphere and the Critical Zone?
 - 1.9 Soils as Natural Bodies
 - 1.10 The Soil Profile and Its Layers (Horizons)
 - 1.11 Topsoil and Subsoil
 - 1.12 SoilInterface of Air, Minerals, Water, and Life
 - 1.13 What are the Mineral (Inorganic) Constituents of Soils?
 - 1.14 The Nature of Soil Organic Matter
 - 1.15 Soil WaterDynamic and Complex
 - 1.16 Soil Air: A Changing Mixture of Gases
 - 1.17 How Do Soil Components Interact to Supply Nutrients to Plants?
 - 1.18 How Do Plant Roots Obtain Nutrients?
 - 1.19 Soil Health, Degradation, and Resilience
 - 1.20 Conclusion

Study Questions

References

- 2 Formation of Soils from Parent Materials
 - 2.1 Weathering of Rocks and Minerals
 - 2.2 What Environmental Factors Influence Soil Formation?
 - 2.3 Parent Materials
 - 2.4 How Does Climate Affect Soil Formation?

- 2.5 How Do Living Organisms (Including People) Affect Soil Formation?
- 2.6 How Does Topography Affect Soil Formation?
- 2.7 How Does Time Affect Soil Formation?
- 2.8 Four Basic Processes of Soil Formation
- 2.9 The Soil Profile
- 2.10 Urban Soils
- 2.11 Conclusion

Study Questions

References

3 Soil Classification

- 3.1 Concept of Individual Soils
- 3.2 Soil Taxonomy: A Comprehensive Classification System
- 3.3 Categories and Nomenclature of Soil Taxonomy
- 3.4 Soil Orders
- 3.5 Entisols (Recent: Little If Any Profile Development)
- 3.6 Inceptisols (Few Diagnostic Features: Inception of B Horizon)
- 3.7 Andisols (Volcanic Ash Soils)
- 3.8 Gelisols (Permafrost and Frost Churning)
- 3.9 Histosols (Organic Soils Without Permafrost)
- 3.10 Aridisols (Dry Soils)
- 3.11 Vertisols (Dark, Swelling, and Cracking Clays)
- 3.12 Mollisols (Dark, Soft Soils of Grasslands)
- 3.13 Alfisols (Argillic or Natric Horizon, Moderately Leached)
- 3.14 Ultisols (Argillic Horizon, Highly Leached)
- 3.15 Spodosols (Acid, Sandy, Forest Soils, Highly Leached)
- 3.16 Oxisols (Oxic Horizon, Highly Weathered)
- 3.17 Lower-Level Categories in Soil Taxonomy
- 3.18 Conclusion

Study Questions

References

4 Soil Architecture and Physical Properties

- 4.1 Soil Color
- 4.2 Soil Texture (Size Distribution of Soil Particles)
- 4.3 Soil Textural Classes
- 4.4 Structure of Mineral Soils
- 4.5 Formation and Stabilization of Soil Aggregates
- 4.6 Tillage and Structural Management of Soils

- 4.7 Soil Density
- 4.8 Pore Space of Mineral Soils
- 4.9 Soil Properties Relevant to Engineering Uses
- 4.10 Conclusion
- Study Questions
- References
- 5 Soil Water: Characteristics and Behavior
 - 5.1 Structure and Related Properties of Water
 - 5.2 Capillary Fundamentals and Soil Water
 - 5.3 Soil Water Energy Concepts
 - 5.4 Soil Water Content and Soil Water Potential
 - 5.5 The Flow of Liquid Water in Soil
 - 5.6 Infiltration and Percolation
 - 5.7 Water Vapor Movement in Soils
 - 5.8 Qualitative Description of Soil Wetness
 - 5.9 Factors Affecting Amount of Plant-Available Soil Water
 - 5.10 Mechanisms by Which Plants are Supplied with Water
 - 5.11 Conclusion
 - Study Questions
 - References
- 6 Soil and the Hydrologic Cycle
 - 6.1 The Global Hydrologic Cycle
 - 6.2 Fate of Incoming Water
 - 6.3 The SoilPlantAtmosphere Continuum (SPAC)
 - 6.4 Control of ET
 - 6.5 Liquid Losses of Water from the Soil
 - 6.6 Percolation and Groundwater
 - 6.7 Enhancing Soil Drainage
 - 6.8 Septic Tank Drain Fields
 - 6.9 Irrigation Principles and Practices
 - 6.10 Conclusion
 - **Study Questions**
 - References
- 7 Soil Aeration and Temperature
 - 7.1 Soil AerationThe Process
 - 7.2 Means of Characterizing Soil Aeration
 - 7.3 OxidationReduction (Redox) Potential

- 7.4 Factors Affecting Soil Aeration and Eh
- 7.5 Ecological Effects of Soil Aeration
- 7.6 Soil Aeration in Urban Landscapes
- 7.7 Wetlands and Their Poorly Aerated Soils
- 7.8 Processes Affected by Soil Temperature
- 7.9 Absorption and Loss of Solar Energy
- 7.10 Thermal Properties of Soils
- 7.11 Soil Temperature Control
- 7.12 Conclusion

Study Questions

References

8 The Colloidal Fraction: Seat of Soil Chemical and Physical Activity

- 8.1 General Properties and Types of Soil Colloids
- 8.2 Fundamentals of Layer Silicate Clay Structure
- 8.3 Mineralogical Organization of Silicate Clays
- 8.4 Structural Characteristics of Nonsilicate Colloids
- 8.5 Genesis and Geographic Distribution of Soil Colloids
- 8.6 Sources of Charges on Soil Colloids
- 8.7 Adsorption of Cations and Anions
- 8.8 Cation Exchange Reactions
- 8.9 Cation Exchange Capacity (CEC)
- 8.10 Exchangeable Cations in Field Soils
- 8.11 Anion Exchange
- 8.12 Sorption of Pesticides and Groundwater Contamination
- 8.13 Binding of Biomolecules to Clay and Humus
- 8.14 Conclusion

Study Questions

References

9 Soil Acidity

- 9.1 What Processes Cause Soil Acidification?
- 9.2 Role of Aluminum in Soil Acidity
- 9.3 Pools of Soil Acidity
- 9.4 Buffering of pH in Soils
- 9.5 How Can We Measure Soil ph?
- 9.6 Human-Influenced Soil Acidification
- 9.7 Biological Effects of Soil pH
- 9.8 Raising Soil pH by Liming

- 9.9 Alternative Ways to Ameliorate the III Effects of Soil Acidity
- 9.10 Lowering Soil pH
- 9.11 Conclusion

Study Questions

References

- 10 Soils of Dry Regions: Alkalinity, Salinity, and Sodicity
 - 10.1 Characteristics and Problems of Dry Region Soils
 - 10.2 Causes of High Soil pH (Alkalinity)
 - 10.3 Development of Salt-Affected Soils
 - 10.4 Measuring Salinity and Sodicity
 - 10.5 Classes of Salt-Affected Soils
 - 10.6 Physical Degradation of Soil by Sodic Chemical Conditions
 - 10.7 Biological Impacts of Salt-Affected Soils
 - 10.8 Water-Quality Considerations for Irrigation
 - 10.9 Reclamation of Saline Soils
 - 10.10 Reclamation of SalineSodic and Sodic Soils
 - 10.11 Management of Reclaimed Soils
 - 10.12 Conclusion

Study Questions

References

- 11 Organisms and Ecology of the Soil
 - 11.1 The Diversity of Organisms in the Soil
 - 11.2 Organisms in Action
 - 11.3 Abundance, Biomass, and Metabolic Activity
 - 11.4 Earthworms
 - 11.5 Ants and Termites
 - 11.6 Soil Microanimals
 - 11.7 Plant Roots
 - 11.8 Soil Algae
 - 11.9 Soil Fungi
 - 11.10 Soil Prokaryotes: Bacteria and Archaea
 - 11.11 Conditions Affecting the Growth and Activity of Soil Microorganisms
 - 11.12 Beneficial Effects of Soil Organisms on Plant Communities
 - 11.13 Soil Organisms and Plant Damage
 - 11.14 Ecological Relationships among Soil Organisms
 - 11.15 Conclusion

Study Questions

References

12 Soil Organic Matter

- 12.1 The Global Carbon Cycle
- 12.2 Organic Decomposition in Soils
- 12.3 Factors Controlling Rates of Residue Decomposition and Mineralization
- 12.4 Genesis and Nature of Soil Organic Matter and Humus
- 12.5 Influences of Organic Matter on Plant Growth and Soil Function
- 12.6 Amounts and Quality of Organic Matter in Soils
- 12.7 Carbon Balance in the SoilPlantAtmosphere System
- 12.8 Environmental Factors Influencing Soil Organic Carbon Levels
- 12.9 Soil Organic Matter Management
- 12.10 Soils and Climate Change
- 12.11 Composts and Composting
- 12.12 Conclusion

Study Questions

References

13 Nitrogen and Sulfur Economy of Soils

- 13.1 Influence of Nitrogen on Plant Growth and Development
- 13.2 Distribution of Nitrogen and the Nitrogen Cycle
- 13.3 Immobilization and Mineralization
- 13.4 Dissolved Organic Nitrogen
- 13.5 Ammonium Fixation by Clay Minerals
- 13.6 Ammonia Volatilization
- 13.7 Nitrification
- 13.8 Gaseous Losses by Denitrification and Anammox
- 13.9 Biological Nitrogen Fixation
- 13.10 Symbiotic Fixation with Legumes
- 13.11 Symbiotic Fixation with Nonlegumes
- 13.12 Nonsymbiotic Nitrogen Fixation
- 13.13 Nitrogen Deposition from the Atmosphere
- 13.14 The Nitrate Leaching Problem
- 13.15 Practical Management of Soil Nitrogen
- 13.16 Importance of Sulfur
- 13.17 Natural Sources of Sulfur
- 13.18 The Sulfur Cycle
- 13.19 Behavior of Sulfur Compounds in Soils
- 13.20 Sulfur Oxidation and Reduction

- 13.21 Sulfur Retention and Exchange
- 13.22 Sulfur and Soil Fertility Maintenance
- 13.23 Conclusion
- Study Questions
- References
- 14 Soil Phosphorus and Potassium
 - 14.1 Phosphorus in Plant Nutrition and Soil Fertility
 - 14.2 Effects of Phosphorus on Environmental Quality
 - 14.3 The Phosphorus Cycle
 - 14.4 Organic Phosphorus in Soils
 - 14.5 Inorganic Phosphorus in Soils
 - 14.6 Solubility of Inorganic Soil Phosphorus
 - 14.7 Phosphorus-Fixation Capacity of Soils
 - 14.8 Plant Strategies for Adequate Phosphorus Acquisition from Soils
 - 14.9 Practical Phosphorus Management
 - 14.10 Potassium: Nature and Ecological Roles
 - 14.11 Potassium in Plant and Animal Nutrition
 - 14.12 The Potassium Cycle
 - 14.13 The Potassium Problem in Soil Fertility
 - 14.14 Forms and Availability of Potassium in Soils
 - 14.15 Factors Affecting Potassium Fixation in Soils
 - 14.16 Practical Aspects of Potassium Management
 - 14.17 Conclusion
 - **Study Questions**
 - References
- 15 Calcium, Magnesium, Silicon, and Trace Elements
 - 15.1 Calcium as an Essential Nutrient
 - 15.2 Magnesium as a Plant Nutrient
 - 15.3 Silicon in SoilPlant Ecology
 - 15.4 Deficiency Versus Toxicity
 - 15.5 Micronutrient Roles in Plants
 - 15.6 Sources of Micronutrients
 - 15.7 Factors Influencing the Availability of the Trace Element Cations
 - 15.8 Organic Compounds as Chelates
 - 15.9 Factors Influencing the Availability of the Trace Element Anions
 - 15.10 Soil Management and Trace Element Needs
 - 15.11 Conclusion

Study Questions

References

16 Practical Nutrient Management

- 16.1 Goals of Nutrient Management
- 16.2 Nutrients as Pollutants
- 16.3 Natural Ecosystem Nutrient Cycles
- 16.4 Recycling Nutrients Through Animal Manures
- 16.5 Industrial and Municipal By-Products
- 16.6 Practical Utilization of Organic Nutrient Sources
- 16.7 Inorganic Commercial Fertilizers
- 16.8 Fertilizer Application Methods
- 16.9 Timing of Fertilizer Application
- 16.10 Diagnostic Tools and Methods
- 16.11 Soil Analysis
- 16.12 Site-Index Approach to Phosphorus Management
- 16.13 Some Advances and Challenges in Fertilizer Management
- 16.14 Conclusion

Study Questions

References

17 Soil Erosion and Its Control

- 17.1 Significance of Soil Erosion and Land Degradation
- 17.2 On-Site and Off-Site impacts of Accelerated Soil Erosion
- 17.3 Mechanics of Water Erosion
- 17.4 Models to Predict the Extent of Water-Induced Erosion
- 17.5 Factors Affecting Interrill and Rill Erosion
- 17.6 Conservation Tillage
- 17.7 Vegetative Barriers
- 17.8 Control of Gully Erosion and Mass Wasting
- 17.9 Control of Accelerated Erosion on Range- and Forestland
- 17.10 Erosion and Sediment Control on Construction Sites
- 17.11 Wind Erosion: Importance and Factors Affecting It
- 17.12 Predicting and Controlling Wind Erosion
- 17.13 Tillage Erosion
- 17.14 Land Capability Classification as a Guide to Conservation
- 17.15 Progress in Soil Conservation
- 17.16 Conclusion
- Study Questions

References

18 Soils and Chemical Pollution

- 18.1 Toxic Organic Chemicals
- 18.2 Kinds of Organic Contaminants
- 18.3 Behavior of Organic Chemicals in Soil
- 18.4 Effects of Pesticides on Soil Organisms
- 18.5 Remediation of Soils Contaminated with Organic Chemicals
- 18.6 Soil Contamination with Toxic Inorganic Substances
- 18.7 Potential Hazards of Chemicals in Sewage Sludge
- 18.8 Prevention and Remediation of Inorganic Soil Contamination
- 18.9 Landfills
- 18.10 Radionuclides in Soil
- 18.11 Radon Gas from Soils
- 18.12 Conclusion

Study Questions

References

19 Geographic Soils Information

- 19.1 Soil Spatial Variability in the Field
- 19.2 Techniques and Tools for Mapping Soils
- 19.3 Modern Technology for Soil Investigations
- 19.4 Remote Sensing in Soil Survey
- 19.5 Making a Soil Survey
- 19.6 Using Soil Surveys
- 19.7 Geographic Information Systems (GIS)
- 19.8 Digital Soil Maps: Properties or Polygons?
- 19.9 GIS, GPS, and Precision Agriculture
- 19.10 Conclusion

Study Questions

References

20 Prospects for Soil Health in the Anthropocene

- 20.1 The Concepts of Soil Health and Soil Quality
- 20.2 Soil Resistance and Resilience
- 20.3 Soils and Global Ecosystem Services
- 20.4 Using Plants to Improve Soil Health
- 20.5 Feeding the Human Population
- 20.6 Intensified Agriculturethe Green Revolution
- 20.7 Impacts of Vastly Increased Ratios of People to Land

20.8 Sustainable Agriculture in Developed Countries

20.9 Biochar: Hype or Hope for Soil Quality?

20.10 Organic Farming Systems

20.11 Sustainable Agriculture Systems for Resource-Poor Farmers

20.12 Conclusion

Study Questions

References

Appendix AWorld Reference Base, Canadian, and Australian Soil Classification Systems Appendix BSI Units, Conversion Factors, Periodic Table of the Elements, and Plant Names

Glossary of Soil Science Terms

Index

