Table of Contents

Cover
About the Cover
Reinforced Concrete Mechanics and Design: Seventh Edition
 Copyright
Contents
Preface
About the Author
1. Introduction
 Reinforced Concrete Structures
 Mechanics of Reinforced Concrete
 Reinforced Concrete Members
 Factors Affecting Choice of Reinforced Concrete for a Structure
 Historical Development of Concrete and Reinforced Concrete as Structural Materials
 Building Codes and the ACI Code
 References
2. The Design Process
 Objectives of Design
 The Design Process
 Limit States and the Design of Reinforced Concrete
 Structural Safety
 Probabilistic Calculation of Safety Factors
 Design Procedures Specified in the ACI Building Code
 Load Factors and Load Combinations in the 2014 ACI Code
Table of Contents

Loadings and Actions
Design for Economy
Sustainability
Customary Dimensions and Construction Tolerances
Inspection
Accuracy of Calculations
Handbooks and Design Aids
References

3. Materials
Concrete
Behavior of Concrete Failing in Compression
Compressive Strength of Concrete
Strength Under Tensile and Multiaxial Loads
Stress-Strain Curves for Concrete
Time-Dependent Volume Changes
High-Strength Concrete
Lightweight Concrete
Fiber Reinforced Concrete
Durability of Concrete
Behavior of Concrete Exposed to High and Low Temperatures
Shotcrete
High-Alumina Cement
Reinforcement
Fiber-Reinforced Polymer (FRP) Reinforcement
Prestressing Steel
References

4. Flexure: Behavior and Nominal Strength of Beam Sections
Introduction
Flexure Theory
Simplifications in Flexure Theory for Design
Table of Contents

Analysis of Nominal Moment Strength for Singly Reinforced Beam Sections
Definition of Balanced Conditions
Code Definitions of Tension-Controlled and Compression-Controlled Sections
Beams with Compression Reinforcement
Analysis of Flanged Sections
Unsymmetrical Beam Sections
References

5. Flexural Design of Beam Sections
 Introduction
 Analysis of Continuous One-Way Floor Systems
 Design of Singly Reinforced Beam Sections with Rectangular Compression Zones
 Design of Doubly Reinforced Beam Sections
 Design of Continuous One-Way Slabs
 References

6. Shear in Beams
 Introduction
 Basic Theory
 Behavior of Beams Failing in Shear
 Analysis and Design of Reinforced Concrete Beams for Shear
 ACI Code
 Other Shear Design Methods
 Hanger Reinforcement
 Tapered Beams
 Shear in Axially Loaded Members
 References

7. Torsion
 Introduction and Basic Theory
 Behavior of Reinforced Concrete Members Subjected to Torsion
Table of Contents

Thin-Walled Tube Analogies
Design for Torsion and Shear
ACI Code Approach
ACI Code Design Method for Torsion
References

8. Development, Anchorage, and Splicing of Reinforcement
 Introduction
 Mechanism of Bond Transfer
 Development Length
 Hooked Anchorages
 Headed and Mechanically Anchored Bars in Tension
 Design for Anchorage
 Bar Cutoffs and Development of Bars in Flexural Members
 Reinforcement Continuity and Structural Integrity Requirements
 Splices
 References

9. Serviceability
 Introduction
 Elastic Analysis of Stresses in Beam Sections
 Cracking
 Deflections of Concrete Beams
 Consideration of Deflections in Design
 Frame Deflections
 Vibrations
 Fatigue
 References

10. Continuous Beams and One-Way Slabs
 Introduction
 Continuity in Reinforced Concrete Structures
 Continuous Beams
 Design of Girders
Table of Contents

Joist Floors
Moment Redistribution
References

11. Columns: Combined Axial Load and Bending
Introduction
Tied and Spiral Columns
Interaction Diagrams
Interaction Diagrams for Reinforced Concrete Columns
Design of Short Columns
Contributions of Steel and Concrete to Column Strength
Biaxially Loaded Columns
References

12. Slender Columns
Introduction
Behavior and Analysis of Pin-Ended Columns
Design of Columns in Nonsway Frames
Behavior of Restrained Columns in Sway Frames
Calculation of Moments in Sway Frames Using Second-Order Analyses
Design of Columns in Sway Frames
General Analysis of Slenderness Effects
Torsional Critical Load
References

13. Two-Way Slabs: Behavior, Analysis, and Design
Introduction
History of Two-Way Slabs
Behavior of Slabs Loaded to Failure in Flexure
Analysis of Moments in Two-Way Slabs
Distribution of Moments in Slabs
Design of Slabs
The Direct-Design Method
Table of Contents

Equivalent-Frame Methods
Use of Computers for an Equivalent-Frame Analysis
Shear Strength of Two-Way Slabs
Combined Shear and Moment Transfer in Two-Way Slabs
Details and Reinforcement Requirements
Design of Slabs Without Beams
Design of Slabs with Beams in Two Directions
Construction Loads on Slabs
Deflections in Two-Way Slab Systems
Use of Post-Tensioning
References

14. Two-Way Slabs: Elastic and Yield-Line Analyses
 Review of Elastic Analysis of Slabs
 Design Moments from a Finite-Element Analysis
 Yield-Line Analysis of Slabs: Introduction
 Yield-Line Analysis: Applications for Two-Way Slab Panels
 Yield-Line Patterns at Discontinuous Corners
 Yield-Line Patterns at Columns or at Concentrated Loads
 References

15. Footings
 Introduction
 Soil Pressure Under Footings
 Structural Action of Strip and Spread Footings
 Strip or Wall Footings
 Spread Footings
 Combined Footings
 Mat Foundations
 Pile Caps
 References

16. Shear Friction, Horizontal Shear Transfer, and Composite
Table of Contents

Concrete Beams
- Introduction
- Shear Friction
- Composite Concrete Beams
- References

17. Discontinuity Regions and Strut-and-Tie Models
- Introduction
- Struts
- Ties
- Nodes and Nodal Zones
- Other Strut-and-Tie Elements
- Layout of Strut-and-Tie Models
- Deep Beams
- Continuous Deep Beams
- Brackets and Corbels
- Dapped Ends
- Beam-Column Joints
- Bearing Strength
- T-Beam Flanges
- References

18. Walls and Shear Walls
- Introduction
- Bearing Walls
- Retaining Walls
- Tilt-Up Walls
- Shear Walls
- Lateral Load-Resisting Systems for Buildings
- Shear-Wall-Frame Interaction
- Coupled Shear Walls
- Design of Structural Walls
- General
Table of Contents

Flexural Strength of Shear Walls
Shear Strength of Shear Walls
Critical Loads for Axially Loaded Walls
References

19. Design for Earthquake Resistance
Introduction
Seismic Response Spectra
Seismic Design Requirements
Seismic Forces on Structures
Ductility of Reinforced Concrete Members
General ACI Code Provisions for Seismic Design
Beams in Special Moment Frames
Columns in Special Moment Frames
Joints of Special Moment Frames
Structural Diaphragms
Structural Walls
Frame Members Not Proportioned to Resist Forces Induced by Earthquake Motions
Special Precast Structures
Foundations
References

Appendix A: Design Aids
Appendix B: Notation
Index