

LOGIC AND COMPUTER DESIGN FUNDAMENTALS

FIFTH EDITION
GLOBAL EDITION

M. Morris Mano

California State University, Los Angeles

Charles R. Kime

University of Wisconsin, Madison

Tom Martin

Virginia Tech

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Logic and Computer Design Fundamentals, Global Edition

Table of Contents

\sim	· ~		_	r
ι,	.ന	۱۱/	Д	r

Logic and Computer Design Fundamentals

Copyright

Contents

Preface

Chapter 1: Digital Systems and Information

Information Representation

The Digital Computer

Beyond the Computer

More on the Generic Computer

Abstraction Layers in Computer Systems Design

An Overview of the Digital Design Process

Number Systems

Binary Numbers

Octal and Hexadecimal Numbers

Number Ranges

Arithmetic Operations

Conversion from Decimal to Other Bases

Decimal Codes

Alphanumeric Codes

ASCII Character Code

Parity Bit

Gray Codes

Chapter Summary

References

Problems

Chapter 2: Combinational Logic Circuits

Binary Logic and Gates

Binary Logic

Logic Gates

HDL Representations of Gates

Boolean Algebra

Basic Identities of Boolean Algebra

Algebraic Manipulation

Complement of a Function

Standard Forms

Minterms and Maxterms

Sum of Products

Product of Sums

Two-Level Circuit Optimization

Cost Criteria

Map Structures

Two-Variable Maps

Three-Variable Maps

Map Manipulation

Essential Prime Implicants

Nonessential Prime Implicants

Product-of-Sums Optimization

Dont-Care Conditions

Exclusive-Or Operator and Gates

Odd Function

Gate Propagation Delay

HDLs Overview

Logic Synthesis

HDL RepresentationsVHDL

HDL RepresentationsVerilog

Chapter Summary

References

Problems

Chapter 3: Combinational Logic Design

Beginning Hierarchical Design

Technology Mapping

Combinational Functional Blocks

Rudimentary Logic Functions

Value-Fixing, Transferring, and Inverting

Multiple-Bit Functions

Enabling

Decoding

Decoder and Enabling Combinations

Decoder-Based Combinational Circuits

Encoding

Priority Encoder

Encoder Expansion

Selecting

Multiplexers

Multiplexer-Based Combinational Circuits

Iterative Combinational Circuits

Binary Adders

Half Adder

Full Adder

Binary Ripple Carry Adder

Binary Subtraction

Complements

Subtraction Using 2s Complement

Binary Adder-Subtractors

Signed Binary Numbers

Signed Binary Addition and Subtraction

Overflow

HDL Models of Adders

Behavioral Description

Other Arithmetic Functions

Contraction

Incrementing

Decrementing

Multiplication by Constants

Division by Constants

Zero Fill and Extension

Chapter Summary

References

Problems

Chapter 4: Sequential Circuits

Sequential Circuit Definitions

Latches

SR and SR Latches

D Latch

Flip-Flops

Edge-Triggered Flip-Flop

Standard Graphics Symbols

Direct Inputs

Sequential Circuit Analysis

Input Equations

State Table

State Diagram

Sequential Circuit Simulation

Sequential Circuit Design

Design Procedure

Finding State Diagrams and State Tables

State Assignment

Designing with D Flip-Flops

Designing with Unused States

Verification

State-Machine Diagrams and Applications

State-Machine Diagram Model

Constraints on Input Conditions

Design Applications Using State- Machine Diagrams

HDL Representation for Sequential CircuitsVHDL

HDL Representation for Sequential CircuitsVerilog

Flip-Flop Timing

Sequential Circuit Timing

Asynchronous Interactions

Synchronization and Metastability

Synchronous Circuit Pitfalls

Chapter Summary

References

Problems

Chapter 5: Digital Hardware Implementation

The Design Space

Integrated Circuits

CMOS Circuit Technology

Technology Parameters

Programmable Implementation Technologies

Read-Only Memory

Programmable Logic Array

Programmable Array Logic Devices

Field Programmable Gate Array

Chapter Summary

References

Problems

Chapter 6: Registers and Register Transfers

Registers and Load Enable

Register with Parallel Load

Register Transfers

Register Transfer Operations

Register Transfers in VHDL and Verilog

Microoperations

Arithmetic Microoperations

Logic Microoperations

Shift Microoperations

Microoperations on a Single Register

Multiplexer-Based Transfers

Shift Registers

Ripple Counter

Synchronous Binary Counters

Other Counters

Register-Cell Design

Multiplexer and Bus-Based Transfers for Multiple Registers

High-Impedance Outputs

Three-State Bus

Serial Transfer and Microoperations

Serial Addition

Control of Register Transfers

Design Procedure

HDL Representation for Shift Registers and CountersVHDL

HDL Representation for Shift Registers and CountersVerilog

Microprogrammed Control

Chapter Summary

References

Problems

Chapter 7: Memory Basics

Memory Definitions

Random-Access Memory

Write and Read Operations

Timing Waveforms

Properties of Memory

SRAM Integrated Circuits

Coincident Selection

Array of SRAM ICs

DRAM ICs

DRAM Cell

DRAM Bit Slice

DRAM Types

Synchronous DRAM (SDRAM)

Double-Data-Rate SDRAM (DDR SDRAM)

RAMBUS® DRAM (RDRAM)

Arrays of Dynamic RAM ICs

Chapter Summary

References

Problems

Chapter 8: Computer Design Basics

Introduction

Datapaths

The Arithmetic/Logic Unit

Arithmetic Circuit

Logic Circuit

Arithmetic/Logic Unit

The Shifter

Barrel Shifter

Datapath Representation

The Control Word

A Simple Computer Architecture

Instruction Set Architecture

Storage Resources

Instruction Formats

Instruction Specifications

Single-Cycle Hardwired Control

Instruction Decoder

Sample Instructions and Program

Single-Cycle Computer Issues

Multiple-Cycle Hardwired Control

Sequential Control Design

Chapter Summary

References

Problems

Chapter 9: Instruction Set Architecture

Computer Architecture Concepts

Basic Computer Operation Cycle

Register Set

Operand Addressing

Three-Address Instructions

Two-Address Instructions

One-Address Instructions

Zero- Address Instructions

Addressing Architectures

Addressing Modes

Implied Mode

Immediate Mode

Register and Register-Indirect Modes

Direct Addressing Mode

Indirect Addressing Mode

Relative Addressing Mode

Indexed Addressing Mode

Summary of Addressing Modes

Instruction Set Architectures

Data-Transfer Instructions

Stack Instructions

Independent versus Memory- Mapped I/O

Data-Manipulation Instructions

Arithmetic Instructions

Logical and Bit- Manipulation Instructions

Shift Instructions

Floating-Point Computations

Arithmetic Operations

Arithmetic Operations

Standard Operand Format

Program Control Instructions

Conditional Branch Instructions

Procedure Call and Return Instructions

Program Interrupt

Types of Interrupts

Processing External Interrupts

Chapter Summary

References

Problems

Chapter 10: Risc and Cisc Central Processing Units

Pipelined Datapath

Execution of Pipeline Microoperations

Pipelined Control

Pipeline Programming and Performance

The Reduced Instruction Set Computer

Instruction Set Architecture

Addressing Modes

Datapath Organization

Control Organization

Data Hazards

Control Hazards

The Complex Instruction Set Computer

ISA Modifications

Datapath Modifications

Control Unit Modifications

Microprogrammed Control

Microprograms for Complex Instructions

More on Design

Advanced CPU Concepts

Recent Architectural Innovations

Chapter Summary

References

Problems

Chapter 11: InputOutput and Communication

Computer I/O

Sample Peripherals

Keyboard

Hard Drive

Liquid Crystal Display Screen

I/O Transfer Rates

I/O Interfaces

I/O Bus and Interface Unit

Example of I/O Interface

Strobing

Handshaking

Serial Communication

Synchronous Transmission

The Keyboard Revisited

A Packet-Based Serial I/O Bus

Modes of Transfer

Example of Program-Controlled Transfer

Interrupt-Initiated Transfer

Priority Interrupt

Daisy Chain Priority

Parallel Priority Hardware

Direct Memory Access

DMA Controller

DMA Transfe

Chapter Summary

References

Problems

Chapter 12: Memory Systems

Memory Hierarchy

Locality of Reference

Cache Memory

Cache Mappings

Line Size

Cache Loading

Write Methods

Integration of Concepts

Instruction and Data Caches

Multiple-Level Caches

Virtual Memory

Page Tables

Translation Lookaside Buffer

Virtual Memory and Cache

Chapter Summary

References

Problems

Index

