Gas Turbine Theory

H.I.H. Saravanamuttoo G.F.C. Rogers • H. Cohen P.V. Straznicky • A.C. Nix

7TH EDITION

GAS TURBINE THEORY

HIH Saravanamuttoo

Professor Emeritus, Department of Mechanical and Aerospace Engineering, Carleton University

GFC Rogers

Lately Professor Emeritus, University of Bristol

H Cohen

Lately Fellow, Queens' College, Cambridge

PV Straznicky

Professor Emeritus, Department of Mechanical and Aerospace Engineering, Carleton University

AC Nix

Assistant Professor, Department of Mechanical and Aerospace Engineering, West Virginia University

Gas Turbine Theory

Table of Contents

^	`	_		. ~	,
l		()	1	\leftarrow	1

Title Page

Copyright Page

Contents

Foreword

Prefaces

Publishers Acknowledgements

- 1 Introduction
 - 1.1 Open-cycle single-shaft and twin-shaft arrangements
 - 1.2 Multi-spool arrangements
 - 1.3 Closed cycles
 - 1.4 Aircraft propulsion
 - 1.5 Industrial applications
 - 1.6 Marine and land transportation
 - 1.7 Environmental issues
 - 1.8 Some future possibilities
 - 1.9 Gas turbine design procedure

2 Shaft power cycles

- 2.1 Ideal cycles
- 2.2 Methods of accounting for component losses
- 2.3 Design point performance calculations
- 2.4 Comparative performance of practical cycles

- 2.5 Combined cycles and cogeneration schemes
- 2.6 Closed-cycle gas turbines

3 Gas turbine cycles for aircraft propulsion

- 3.1 Criteria of performance
- 3.2 Intake and propelling nozzle efficiencies
- 3.3 Simple turbojet cycle
- 3.4 The turbofan engine
- 3.5 The turboprop engine
- 3.6 The turboshaft engine
- 3.7 Auxiliary power units
- 3.8 Thrust augmentation
- 3.9 Miscellaneous topics

4 Centrifugal compressors

- 4.1 Principle of operation
- 4.2 Work done and pressure rise
- 4.3 The diffuser
- 4.4 Compressibility effects
- 4.5 Non-dimensional quantities for plotting compressor characteristics
- 4.6 Compressor characteristics
- 4.7 Computerized design procedures

5 Axial flow compressors

- 5.1 Basic operation
- 5.2 Elementary theory
- 5.3 Factors affecting stage pressure ratio
- 5.4 Blockage in the compressor annulus
- 5.5 Degree of reaction

- 5.6 Three-dimensional flow
- 5.7 Design process
- 5.8 Blade design
- 5.9 Calculation of stage performance
- 5.10 Compressibility effects
- 5.11 Off-design performance
- 5.12 Axial compressor characteristics
- 5.13 Closure

6 Combustion systems

- 6.1 Operational requirements
- 6.2 Types of combustion system
- 6.3 Some important factors affecting combustor design
- 6.4 The combustion process
- 6.5 Combustion chamber performance
- 6.6 Some practical problems
- 6.7 Gas turbine emissions
- 6.8 Pressure gain combustion
- 6.9 Coal gasification

7 Axial and radial flow turbines

- 7.1 Elementary theory of axial flow turbine
- 7.2 Vortex theory
- 7.3 Choice of blade profile, pitch and chord
- 7.4 Estimation of stage performance
- 7.5 Overall turbine performance
- 7.6 The cooled turbine
- 7.7 The radial flow turbine
- 8 Mechanical design of gas turbines

- 8.1 Design process
- 8.2 Gas turbine architecture
- 8.3 Loads and failure modes
- 8.4 Gas turbine materials
- 8.5 Design against failure and life estimations
- 8.6 Blades
- 8.7 Bladed rotor discs
- 8.8 Blade and disc vibration
- 8.9 Engine vibration
- 8.10 Power transmissions
- 8.12 Closure

9 Prediction of performance of simple gas turbines

- 9.1 Component characteristics
- 9.2 Off-design operation of the single-shaft gas turbine
- 9.3 Equilibrium running of a gas generator
- 9.4 Off-design operation of free turbine engine
- 9.5 Off-design operation of the jet engine
- 9.6 Methods of displacing the equilibrium running line
- 9.7 Incorporation of variable pressure losses
- 9.8 Power extraction

10 Prediction of performance further topics

- 10.1 Methods of improving part load performance
- 10.2 Matching procedures for twin-spool engines
- 10.3 Some notes on the behaviour of twin-spool engines
- 10.4 Matching procedures for turbofan engines
- 10.5 Transient behaviour of gas turbines
- 10.6 Performance deterioration

10.7 Principles of control systems

Appendix A Some notes on gas dynamics

- A.1 Compressibility effects (qualitative treatment)
- A.2 Basic equations for steady one-dimensional compressible flow of a perfect gas in a duct
- A.3 Isentropic flow in a duct of varying area
- A.4 Frictionless flow in a constant area duct with heat transfer
- A.5 Adiabatic flow in a constant area duct with friction
- A.6 Plane normal shock waves
- A.7 Oblique shock waves
- A.8 Isentropic two-dimensional supersonic expansion and compression

Appendix B Problems

Appendix C References

Index

