

Applied Fluid Mechanics

SEVENTH EDITION

Mott • Untener

APPLIED FLUID MECHANICS

Global Edition

Applied Fluid Mechanics, Global Edition

Table of Contents

C	\cap	10	a۲	•
	U	νŧ	31	

Title

Copyright

Contents

Preface

Acknowledgments

1 The Nature of Fluids and the Study of Fluid Mechanics

The Big Picture

- 1.1 Objectives
- 1.2 Basic Introductory Concepts
- 1.3 The International System of Units (SI)
- 1.4 The U.S. Customary System
- 1.5 Weight and Mass
- 1.6 Temperature
- 1.7 Consistent Units in an Equation
- 1.8 The Definition of Pressure
- 1.9 Compressibility
- 1.10 Density, Specific Weight, and Specific Gravity
- 1.11 Surface Tension

References

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

2 Viscosity of Fluids

- 2.1 Objectives
- 2.2 Dynamic Viscosity
- 2.3 Kinematic Viscosity
- 2.4 Newtonian Fluids and Non-Newtonian Fluids
- 2.5 Variation of Viscosity with Temperature

- 2.6 Viscosity Measurement
- 2.7 SAE Viscosity Grades
- 2.8 ISO Viscosity Grades
- 2.9 Hydraulic Fluids for Fluid Power Systems

References

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

3 Pressure Measurement

The Big Picture

- 3.1 Objectives
- 3.2 Absolute and Gage Pressure
- 3.3 Relationship between Pressure and Elevation
- 3.4 Development of the PressureElevation Relation
- 3.5 Pascals Paradox
- 3.6 Manometers
- 3.7 Barometers
- 3.8 Pressure Expressed as the Height of a Column of Liquid
- 3.9 Pressure Gages and Transducers

References

Internet Resources

Practice Problems

4 Forces Due to Static Fluids

- 4.1 Objectives
- 4.2 Gases Under Pressure
- 4.3 Horizontal Flat Surfaces Under Liquids
- 4.4 Rectangular Walls
- 4.5 Submerged Plane AreasGeneral
- 4.6 Development of the General Procedure for Forces on Submerged Plane Areas
- 4.7 Piezometric Head
- 4.8 Distribution of Force on a Submerged Curved Surface
- 4.9 Effect of a Pressure above the Fluid Surface
- 4.10 Forces on a Curved Surface with Fluid Below It
- 4.11 Forces on Curved Surfaces with Fluid Above and Below

Practice Problems

Computer Aided Engineering Assignments

5 Buoyancy and Stability

The Big Picture

- 5.1 Objectives
- 5.2 Buoyancy
- 5.3 Buoyancy Materials
- 5.4 Stability of Completely Submerged Bodies
- 5.5 Stability of Floating Bodies
- 5.6 Degree of Stability

Reference

Internet Resources

Practice Problems

Stability Evaluation Projects

6 Flow of Fluids and Bernoullis Equation

The Big Picture

- 6.1 Objectives
- 6.2 Fluid Flow Rate and the Continuity Equation
- 6.3 Commercially Available Pipe and Tubing
- 6.4 Recommended Velocity of Flow in Pipe and Tubing
- 6.5 Conservation of EnergyBernoullis Equation
- 6.6 Interpretation of Bernoullis Equation
- 6.7 Restrictions on Bernoullis Equation
- 6.8 Applications of Bernoullis Equation
- 6.9 Torricellis Theorem
- 6.10 Flow Due to a Falling Head

References

Internet Resources

Practice Problems

Analysis Projects Using Bernoullis Equation and Torricellis Theorem

7 General Energy Equation

- 7.1 Objectives
- 7.2 Energy Losses and Additions
- 7.3 Nomenclature of Energy Losses and Additions

- 7.4 General Energy Equation
- 7.5 Power Required by Pumps
- 7.6 Power Delivered to Fluid Motors

Practice Problems

8 Reynolds Number, Laminar Flow, Turbulent Flow, and Energy Losses Due to Friction

The Big Picture

- 8.1 Objectives
- 8.2 Reynolds Number
- 8.3 Critical Reynolds Numbers
- 8.4 Darcys Equation
- 8.5 Friction Loss in Laminar Flow
- 8.6 Friction Loss in Turbulent Flow
- 8.7 Use of Software for Pipe Flow Problems
- 8.8 Equations for the Friction Factor
- 8.9 HazenWilliams Formula for Water Flow
- 8.10 Other Forms of the HazenWilliams Formula
- 8.11 Nomograph for Solving the HazenWilliams Formula

References

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

9 Velocity Profiles for Circular Sections and Flow in Noncircular Sections

The Big Picture

- 9.1 Objectives
- 9.2 Velocity Profiles
- 9.3 Velocity Profile for Laminar Flow
- 9.4 Velocity Profile for Turbulent Flow
- 9.5 Flow in Noncircular Sections
- 9.6 Computational Fluid Dynamics

References

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

10 Minor Losses

The Big Picture

- 10.1 Objectives
- 10.2 Resistance Coefficient
- 10.3 Sudden Enlargement
- 10.4 Exit Loss
- 10.5 Gradual Enlargement
- 10.6 Sudden Contraction
- 10.7 Gradual Contraction
- 10.8 Entrance Loss
- 10.9 Resistance Coefficients for Valves and Fittings
- 10.10 Application of Standard Valves
- 10.11 Pipe Bends
- 10.12 Pressure Drop in Fluid Power Valves
- 10.13 Flow Coefficients for Valves Using CV
- 10.14 Plastic Valves
- 10.15 Using K-Factors in PIPE-FLO ® Software

References

Internet Resources

Practice Problems

Computer Aided Analysis and Design Assignments

11 Series Pipeline Systems

The Big Picture

- 11.1 Objectives
- 11.2 Class I Systems
- 11.3 Spreadsheet Aid for Class I Problems
- 11.4 Class II Systems
- 11.5 Class II Systems
- 11.6 PIPE-FLO® Examples for Series Pipeline Systems
- 11.7 Pipeline Design for Structural Integrity

References

Internet Resources

Practice Problems

Computer Aided Analysis and Design Assignments

12 Parallel and Branching Pipeline Systems

- 12.1 Objectives
- 12.2 Systems with Two Branches
- 12.3 Parallel Pipeline Systems and Pressure Boundaries in PIPE-FLO®
- 12.4 Systems with Three or More BranchesNetworks

References

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

13 Pump Selection and Application

The Big Picture

- 13.1 Objectives
- 13.2 Parameters Involved in Pump Selection
- 13.3 Types of Pumps
- 13.4 Positive-Displacement Pumps
- 13.5 Kinetic Pumps
- 13.6 Performance Data for Centrifugal Pumps
- 13.7 Affinity Laws for Centrifugal Pumps
- 13.8 Manufacturers Data for Centrifugal Pumps
- 13.9 Net Positive Suction Head
- 13.10 Suction Line Details
- 13.11 Discharge Line Details
- 13.12 The System Resistance Curve
- 13.13 Pump Selection and the Operating Point for the System
- 13.14 Using Pipe-flo® for Selection of Commercially Available Pumps
- 13.15 Alternate System Operating Modes
- 13.16 Pump Type Selection and Specific Speed
- 13.17 Life Cycle Costs for Pumped Fluid Systems

References

Internet Resources

Practice Problems

Supplemental Problem (PIPE-FLO® Only)

Design Problems

Design Problem Statements

Comprehensive Design Problem

14 Open-Channel Flow

The Big Picture

- 14.1 Objectives
- 14.2 Classification of Open-Channel Flow
- 14.3 Hydraulic Radius and Reynolds Number in Open-Channel Flow
- 14.4 Kinds of Open-Channel Flow
- 14.5 Uniform Steady Flow in Open Channels
- 14.6 The Geometry of Typical Open Channels
- 14.7 The Most Efficient Shapes for Open Channels
- 14.8 Critical Flow and Specific Energy
- 14.9 Hydraulic Jump
- 14.10 Open-Channel Flow Measurement

References

Digital Publications

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

15 Flow Measurement

The Big Picture

- 15.1 Objectives
- 15.2 Flowmeter Selection Factors
- 15.3 Variable-Head Meters
- 15.4 Variable-Area Meters
- 15.5 Turbine Flowmeter
- 15.6 Vortex Flowmeter
- 15.7 Magnetic Flowmeter
- 15.8 Ultrasonic Flowmeters
- 15.9 Positive-Displacement Meters
- 15.10 Mass Flow Measurement
- 15.11 Velocity Probes
- 15.12 Level Measurement
- 15.13 Computer-Based Data Acquisition and Processing

References

Internet Resources

Review Questions

Practice Problems

Computer Aided Engineering Assignments

16 Forces Due to Fluids in Motion

The Big Picture

- 16.1 Objectives
- 16.2 Force Equation
- 16.3 ImpulseMomentum Equation
- 16.4 Problem-Solving Method Using the Force Equations
- 16.5 Forces on Stationary Objects
- 16.6 Forces on Bends in Pipelines
- 16.7 Forces on Moving Objects

Practice Problems

17 Drag and Lift

The Big Picture

- 17.1 Objectives
- 17.2 Drag Force Equation
- 17.3 Pressure Drag
- 17.4 Drag Coefficient
- 17.5 Friction Drag on Spheres in Laminar Flow
- 17.6 Vehicle Drag
- 17.7 Compressibility Effects and Cavitation
- 17.8 Lift and Drag on Airfoils

References

Internet Resources

Practice Problems

18 Fans, Blowers, Compressors, and the Flow of Gases

The Big Picture

- 18.1 Objectives
- 18.2 Gas Flow Rates and Pressures
- 18.3 Classification of Fans, Blowers, and Compressors
- 18.4 Flow of Compressed Air and Other Gases in Pipes
- 18.5 Flow of Air and Other Gases Through Nozzles

References

Internet Resources

Practice Problems

Computer Aided Engineering Assignments

19 Flow of Air in Ducts

The Big Picture

19.1 Objectives

19.2 Energy Losses in Ducts

19.3 Duct Design

19.4 Energy Efficiency and Practical Considerations in Duct Design

References

Internet Resources

Practice Problems

Appendices

Appendix A Properties of Water

Appendix B Properties of Common Liquids

Appendix C Typical Properties of Petroleum Lubricating Oils

Appendix D Variation of Viscosity with Temperature

Appendix E Properties of Air

Appendix F Dimensions of Steel Pipe

Appendix G Dimensions of Steel, Copper, and Plastic Tubing

Appendix H Dimensions of Type K Copper Tubing

Appendix I Dimensions of Ductile Iron Pipe

Appendix J Areas of Circles

Appendix K Conversion Factors

Appendix L Properties of Areas

Appendix M Properties of Solids

Appendix N Gas Constant, Adiabatic Exponent, and Critical Pressure Ratio for Selected Gases

Answers to Selected Problems

Index

