Surveying with Construction Applications

Global Edition

Barry F. Kavanagh, B.A., CET
Seneca College, Emeritus

Dianne K. Slattery, Ph.D., P.E.
Missouri State University
Surveying with Construction Applications, Global Edition

Table of Contents

Cover
Title
Copyright
Contents
Part I Surveying Principles
 1 Surveying Fundamentals
 1.1 Surveying Defined
 1.2 Surveying: General Background
 1.3 Control Surveys
 1.4 Preliminary Surveys
 1.5 Surveying Instruments
 1.6 Construction Surveys
 1.7 Distance Measurement
 1.8 Angle Measurement
 1.9 Position Measurement
 1.10 Units of Measurement
 1.11 Stationing
 1.12 Types of Construction Projects
 1.13 Random and Systematic Errors
 1.14 Accuracy and Precision
 1.15 Mistakes
 1.16 Field Notes
 Review Questions
Table of Contents

2 Surveying Mathematics
 2.1 Unit Conversions
 2.2 Lines and Angles
 2.3 Polygons
 2.4 Circles
 2.5 Rectangular Coordinates
 Problems

3 Tape Measurements
 3.1 Background
 3.2 Gunters Chain
 3.3 Tapes
 3.4 Steel Tapes
 3.5 Taping Accessories and Their Use
 3.6 Taping Techniques
 3.7 Taping Corrections
 3.8 Systematic Taping Errors and Corrections
 3.9 Random Taping Errors
 3.10 Techniques for Ordinary Taping Precision
 3.11 Mistakes in Taping
 3.12 Field Notes for Taping
 Problems

4 Leveling
 4.1 General Background
 4.2 Theory of Differential Leveling
 4.3 Types of Surveying Levels
 4.4 Leveling Rods
 4.5 Definitions for Differential Leveling
 4.6 Techniques of Leveling
 4.7 Benchmark Leveling (Vertical Control Surveys)
Table of Contents

4.8 Profile and Cross-Section Leveling
4.9 Reciprocal Leveling
4.10 Peg Test
4.11 Three-Wire Leveling
4.12 Trigonometric Leveling
4.13 Level Loop Adjustments
4.14 Suggestions for Rod Work
4.15 Suggestions for Instrument Work
4.16 Mistakes in Leveling
Problems

5 Electronic Distance Measurement
 5.1 General Background
 5.2 Electronic Angle Measurement
 5.3 Principles of Electronic Distance Measurement
 5.4 EDM Instrument Characteristics
 5.5 Prisms
 5.6 EDM Instrument Accuracies
 5.7 EDM Without Reflecting Prisms
Problems

6 Introduction to Total Stations and Theodolites
 6.1 General Background
 6.2 Reference Directions for Vertical Angles
 6.3 Meridians
 6.4 Horizontal Angles
 6.5 Theodolites
 6.6 Electronic Theodolites
 6.7 Total Station
 6.8 Theodolite/Total Station Setup
 6.9 Geometry of the Theodolite and Total Station
Table of Contents

6.10 Adjustment of the Theodolite and Total Station
6.11 Laying Off Angles
6.12 Prolonging a Straight Line (Double Centering)
6.13 Bucking-in (Interlining)
6.14 Intersection of Two Straight Lines
6.15 Prolonging a Measured Line over an Obstacle by Triangulation
6.16 Prolonging a Line Past an Obstacle

Review Questions

7 Total Stations
 7.1 General Background
 7.2 Total Station Capabilities
 7.3 Total Station Field Techniques
 7.4 Field Procedures for Total Stations in Topographic Surveys
 7.5 Field-Generated Graphics
 7.6 Construction Layout Using Total Stations
 7.7 Motorized Total Stations
 7.8 Summary of Modern Total Station Characteristics and Capabilities
 7.9 Instruments Combining Total Station Capabilities and GPS Receiver Capabilities
 7.10 Portable/Handheld Total Stations

Review Questions

8 Traverse Surveys and Computations
 8.1 General Background
 8.2 Balancing Field Angles
 8.3 Meridians
 8.4 Bearings
 8.5 Azimuths
 8.6 Latitudes and Departures
 8.7 Traverse Precision and Accuracy
Table of Contents

8.8 Compass Rule Adjustment
8.9 Effects of Traverse Adjustments on Measured Angles and Distances
8.10 Omitted Measurement Computations
8.11 Rectangular Coordinates of Traverse Stations
8.12 Area of a Closed Traverse by the Coordinate Method

Problems

9 Satellite Positioning

9.1 General Background
9.2 The U.S. Global Positioning System
9.3 Receivers
9.4 Satellite Constellations
9.5 GPS Satellite Signals
9.6 GPS Position Measurements
9.7 Errors
9.8 Continuously Operating Reference Station
9.9 Canadian Active Control System
9.10 Survey Planning
9.11 GPS Field Procedures
9.12 GPS Applications
9.13 Vertical Positioning
9.14 Conclusion
9.15 GPS Glossary
9.16 Recommended Readings

Review Questions

10 An Introduction to Geomatics

10.1 Geomatics Defined
10.2 Introduction to Electronic Surveying
10.3 Branches of Geomatics
10.4 Data Collection Branch: Preelectronic Techniques
Table of Contents

10.5 Design and Plotting
10.6 Contours
10.7 Aerial Photography
10.8 Airborne and Satellite Imagery
10.9 Remote-Sensing Satellites
10.10 Geographic Information System
10.11 Database Management
10.12 Metadata
10.13 Spatial Entities or Features
10.14 Typical Data Representation
10.15 Spatial Data Models
10.16 GIS Data Structures
10.17 Topology
10.18 Remote Sensing Internet Resources
Review Questions
Problems

11 Horizontal Control Surveys
11.1 General Background
11.2 Plane Coordinate Grids
11.3 Lambert Projection Grid
11.4 Transverse Mercator Grid
11.5 UTM Grid
11.6 Horizontal Control Techniques
11.7 Project Control
Review Questions
Problems

Part II Construction Applications

II.1 Introduction
Table of Contents

II.2 General Background
II.3 Grade

12 Machine Guidance and Control
 12.1 General Background
 12.2 Motorized Total Station Guidance and Control
 12.3 Satellite Positioning Guidance and Control
 12.4 Three-Dimensional Data Files
 12.5 Summary of the 3D Design Process
 12.6 Web Site References for Data Collection, DTM, and Civil Design

Review Questions

13 Highway Curves
 13.1 Route Surveys
 13.2 Circular Curves: General Background
 13.3 Circular Curve Geometry
 13.4 Circular Curve Deflections
 13.5 Chord Calculations
 13.6 Metric Considerations
 13.7 Field Procedure (Steel Tape and Theodolite)
 13.8 Moving up on the Curve
 13.9 Offset Curves
 13.10 Compound Circular Curves
 13.11 Reverse Curves
 13.12 Vertical Curves: General Background
 13.13 Geometric Properties of the Parabola
 13.14 Computation of the High or the Low Point on a Vertical Curve
 13.15 Computing a Vertical Curve
 13.16 Spiral Curves: General Background
 13.17 Spiral Curve Computations
 13.18 Spiral Layout Procedure Summary
Table of Contents

13.19 Approximate Solution for Spiral Problems
13.20 Superelevation: General Background
13.21 Superelevation Design
Review Questions
Problems

14 Highway Construction Surveys
14.1 Preliminary (Preengineering) Surveys
14.2 Highway Design
14.3 Highway Construction Layout
14.4 Clearing, Grubbing, and Stripping Topsoil
14.5 Placement of Slope Stakes
14.6 Layout for line and Grade
14.7 Grade Transfer
14.8 Ditch Construction
Review Questions

15 Municipal Street Construction Surveys
15.1 General Background
15.2 Classification of Roads and Streets
15.3 Road Allowances
15.4 Road Cross Sections
15.5 Plan and Profile
15.6 Establishing Centerline
15.7 Establishing Offset Lines and Construction Control
15.8 Construction Grades for a Curbed Street
15.9 Street Intersections
15.10 Sidewalk Construction
15.11 Site Grading
Problems

16 Pipeline and Tunnel Construction Surveys
Table of Contents

16.1 Pipeline Construction
16.2 Sewer Construction
16.3 Layout for Line and Grade
16.4 Catch-Basin Construction Layout
16.5 Tunnel Construction Layout

Problems

17 Culvert and Bridge Construction Surveys
 17.1 Culvert Construction
 17.2 Culvert Reconstruction
 17.3 Bridge Construction: General
 17.4 Contract Drawings
 17.5 Layout Computations
 17.6 Offset Distance Computations
 17.7 Dimension Verification
 17.8 Vertical Control
 17.9 Cross Sections for Footing Excavations

Review Questions

18 Building Construction Surveys
 18.1 Building Construction: General
 18.2 Single-Story Construction
 18.3 Multistory Construction

Review Questions

19 Quantity and Final Surveys
 19.1 Construction Quantity Measurements: General Background
 19.2 Area Computations
 19.3 Area by Graphical Analysis
 19.4 Construction Volumes
 19.5 Cross Sections, End Areas, and Volumes
 19.6 Prismoidal Formula
Table of Contents

19.7 Volume Computations by Geometric Formulas
19.8 Final (As-Built) Surveys
Problems

Appendix A Coordinate Geometry Review
 A.1 Geometry of Rectangular Coordinates
 A.2 Illustrative Problems in Rectangular Coordinates

Appendix B Answers to Selected Problems

Appendix C Glossary

Appendix D Typical Field Projects
 D.1 Field Notes
 D.2 Project 1: Building Measurements
 D.3 Project 2: Experiment to Determine Normal Tension
 D.4 Project 3: Field Traverse Measurements with a Steel Tape
 D.5 Project 4: Differential Leveling
 D.6 Project 5: Traverse Angle Measurements and Closure Computations
 D.7 Project 6: Topographic Survey
 D.8 Project 7: Building Layout
 D.9 Project 8: Horizontal Curve
 D.10 Project 9: Pipeline Layout

Appendix E Illustrations of Machine Control and of Various Data-Capture Techniques

Index
 A
 B
 C
Table of Contents