

Digital Control System Analysis and Design

FOURTH EDITION

Charles L. Phillips • H. Troy Nagle • Aranya Chakrabortty

ALWAYS LEARNING PEARSON

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN

FOURTH EDITION
GLOBAL EDITION

Charles L. Phillips

Auburn University

H. Troy Nagle

North Carolina State University

Aranya Chakrabortty

North Carolina State University

Digital Control System Analysis & Design, Global Edition

Table of Contents

/ · -		-	
. (w	$\boldsymbol{\omega}$	r

Dedication

Contents

Preface

Chapter 1: Introduction

- 1.1 Overview
- 1.2 Digital Control System
- 1.3 The Control Problem
- 1.4 Satellite Model
- 1.5 Servomotor System Model

Antenna Pointing System

Robotic Control System

- 1.6 Temperature Control System
- 1.7 Single-Machine Infinite Bus Power System
- 1.8 Summary

References

Problems

Chapter 2: Discrete-Time Systems and the z-Transform

- 2.1 Introduction
- 2.2 Discrete-Time Systems
- 2.3 Transform Methods

2.4 Properties of the z-Transform

Addition and Subtraction

Multiplication by a Constant

Real Translation

Complex Translation

Initial Value

Final Value

- 2.5 Finding z-Transforms
- 2.6 Solution of Difference Equations
- 2.7 The Inverse z-Transform

Power Series Method

Partial-Fraction Expansion Method

Inversion-Formula Method

Discrete Convolution

- 2.8 Simulation Diagrams and Flow Graphs
- 2.9 State Variables
- 2.10 Other State-Variable Formulations
- 2.11 Transfer Functions
- 2.12 Solutions of the State Equations

Recursive Solution

z-Transform Method

Numerical Method via Digital Computer

Properties of the State Transition Matrix

- 2.13 Linear Time-Varying Systems
- 2.14 Summary

References and Further Readings

Problems

Chapter 3: Sampling and Reconstruction

- 3.1 Introduction
- 3.2 Sampled-Data Control Systems
- 3.3 The Ideal Sampler
- 3.4 Evaluation of E*(s)
- 3.5 Results from the Fourier Transform
- 3.6 Properties of E*(s)
- 3.7 Data Reconstruction

Zero-Order Hold

First-Order Hold

Fractional-Order Holds

3.8 Summary

References and Further Readings

Problems

Chapter 4: Open-Loop Discrete-Time Systems

- 4.1 Introduction
- 4.2 The Relationship Between E(z) and $E^*(s)$
- 4.3 The Pulse Transfer Function
- 4.4 Open-Loop Systems Containing Digital Filters
- 4.5 The Modified z-Transform
- 4.6 Systems with Time Delays
- 4.7 Nonsynchronous Sampling
- 4.8 State-Variable Models
- 4.9 Review of Continuous-Time State Variables
- 4.10 Discrete-Time State Equations
- 4.11 Practical Calculations
- 4.12 Summary

References and Further Readings

Problems

Chapter 5: Closed-Loop Systems

- 5.1 Introduction
- 5.2 Preliminary Concepts
- 5.3 Derivation Procedure
- 5.4 State-Variable Models
- 5.5 Summary

References and Further Readings

Problems

Chapter 6: System Time-Response Characteristics

- 6.1 Introduction
- 6.2 System Time Response
- 6.3 System Characteristic Equation
- 6.4 Mapping the s-Plane into the z-Plane
- 6.5 Steady-State Accuracy
- 6.6 Simulation
- 6.7 Control Software
- 6.8 Summary

References and Further Readings

Problems

Chapter 7: Stability Analysis Techniques

- 7.1 Introduction
- 7.2 Stability
- 7.3 Bilinear Transformation
- 7.4 The RouthHurwitz Criterion
- 7.5 Jurys Stability Test

- 7.6 Root Locus
- 7.7 The Nyquist Criterion
- 7.8 The Bode Diagram
- 7.9 Interpretation of the Frequency Response
- 7.10 Closed-Loop Frequency Response
- 7.11 Summary

References and Further Readings

Problems

Chapter 8: Digital Controller Design

- 8.1 Introduction
- 8.2 Control System Specifications

Steady-State Accuracy

Transient Response

Relative Stability

Sensitivity

Disturbance Rejection

Control Effort

- 8.3 Compensation
- 8.4 Phase-Lag Compensation
- 8.5 Phase-Lead Compensation
- 8.6 Phase-Lead Design Procedure
- 8.7 Lag-Lead Compensation
- 8.8 Integration and Differentiation Filters
- 8.9 PID Controllers
- 8.10 PID Controller Design
- 8.11 Design by Root Locus
- 8.12 Summary

References and Further Readings

Problems

Chapter 9: Pole-Assignment Design and State Estimation

- 9.1 Introduction
- 9.2 Pole Assignment
- 9.3 State Estimation

Observer Model

Errors in Estimation

Error Dynamics

Controller Transfer Function

Closed-Loop Characteristic Equation

Closed-Loop State Equations

- 9.4 Reduced-Order Observers
- 9.5 Current Observers
- 9.6 Controllability and Observability
- 9.7 Systems with Inputs
- 9.8 Summary

References and Further Readings

Problems

Chapter 10: System Identification of Discrete-Time Systems

- 10.1 Introduction
- 10.2 Identification of Static Systems
- 10.3 Identification of Dynamic Systems
- 10.4 Black-Box Identification
- 10.5 Least-Squares System Identification
- 10.6 Estimating Transfer Functions with Partly Known Poles and Zeros

10.7 F	Recursive	Least-So	uares S	vstem	Identifi	cation
--------	-----------	----------	---------	-------	----------	--------

10.8 Practical Factors for Identification

Choice of Input

Choice of Sampling Frequency

Choice of Signal Scaling

10.9 Summary

References and Further Readings

Problems

Chapter 11: Linear Quadratic Optimal Control

- 11.1 Introduction
- 11.2 The Quadratic Cost Function
- 11.3 The Principle of Optimality
- 11.4 Linear Quadratic Optimal Control
- 11.5 The Minimum Principle
- 11.6 Steady-State Optimal Control
- 11.7 Optimal State Estimation Kalman Filters
- 11.8 Least-Squares Minimization
- 11.9 Summary

References and Further Readings

Problems

Chapter 12: Case Studies

- 12.1 Introduction
- 12.2 Servomotor System

System Model

Design

12.3 Environmental Chamber Control System

Temperature Control System

12.4 Aircraft Landing System

Plant Model

Design

12.5 Neonatal Fractional Inspired Oxygen

Plant Transfer Function

Taubes PID Controller

MATLAB pidtool PIDF Controllers

12.6 Topology Identification in Electric Power System Models

References

Appendix

Appendix I: Design Equations

Appendix II: Masons Gain Formula

References

Appendix III: Evaluation of E*(s)

References

Appendix IV: Review of Matrices

Algebra of Matrices

Other Relationships

References

Appendix V: The Laplace Transform

Introduction

Properties of the Laplace Transform

Differential Equations and Transfer Functions

References

Problems

Appendix VI: z-Transform Tables

Index

