
PEARSON NEW INTERNATIONAL EDITION

Field and Wave Electromagnetics

David K. Cheng Second Edition

Pearson New International Edition

Field and Wave Electromagnetics

David K. Cheng Second Edition

Field and Wave Electromagnetics

Table of Contents

\sim	,~		,,	`	r
ι.	-(1	١.	,,	_	r

Title

Preface

Contents

- 1 The Electromagnetic Model
 - 1-1 Introduction
 - 1-2 The Electromagnetic Model
 - 1-3 SI Units and Universal Constants

Review Questions

2 Vector Analysis

- 2-1 Introduction
- 2-2 Vector Addition and Subtraction
- 2-3 Products of Vectors
 - 2-3.1 Scalar or Dot Product
 - 2-3.2 Vector or Cross Product
 - 2-3.3 Product of Three Vectors
- 2-4 Orthogonal Coordinate Systems
 - 2-4.1 Cartesian Coordinates
 - 2-4.2 Cylindrical Coordinates
 - 2-4.3 Spherical Coordinates
- 2-5 Integrals Containing Vector Functions
- 2-6 Gradient of a Scalar Field
- 2-7 Divergence of a Vector Field

- 2-8 Divergence Theorem
- 2-9 Curl of a Vector Field
- 2-10 Stokes's Theorem
- 2-11 Two Null Identities
 - 2-11.1 Identity I
 - 2-11.2 Identity II
- 2-12 Helmholtz's Theorem

Review Questions

Problems

- 3 Static Electric Fields
 - 3-1 Introduction
 - 3-2 Fundamental Postulates of Electrostatics in Free Space
 - 3-3 Coulomb's Law
 - 3-3.1 Electric Field Due to a System of Discrete Charges
 - 3-3.2 Electric Field Due to a Continuous Distribution of Charge
 - 3-4 Gauss's Law and Applications
 - 3-5 Electric Potential
 - 3-5.1 Electric Potential Due to a Charge Distribution
 - 3-6 Conductors in Static Electric Field
 - 3-7 Dielectrics in Static Electric Field
 - 3-7.1 Equivalent Charge Distributions of Polarized Dielectrics
 - 3-8 Electric Flux Density and Dielectric Constant
 - 3-8.1 Dielectric Strength
 - 3-9 Boundary Conditions for Electrostatic Fields
 - 3-10 Capacitance and Capacitors
 - 3-10.1 Series and Parallel Connections of Capacitors
 - 3-10.2 Capacitances in Multiconductor Systems
 - 3-10.3 Electrostatic Shielding

3-11 Electrostatic Energy and Forces

- 3-11.1 Electrostatic Energy in Terms of Field Quantities
- 3-11.2 Electrostatic Forces

Review Questions

Problems

4 Solution of Electrostatic Problems

- 4-1 Introduction
- 4-2 Poisson's and Laplace's Equations
- 4-3 Uniqueness of Electrostatic Solutions
- 4-4 Method of Images
 - 4-4.1 Point Charge and Conducting Planes
 - 4-4.2 Line Charge and Parallel Conducting Cylinder
 - 4-4.3 Point Charge and Conducting Sphere 170
 - 4-4.4 Charged Sphere and Grounded Plane
- 4-5 Boundary-Value Problems in Cartesian Coordinates
- 4-6 Boundary-Value Problems in Cylindrical Coordinates
- 4-7 Boundary-Value Problems in Spherical Coordinates

Review Questions

Problems

5 Steady Electric Currents

- 5-1 Introduction
- 5-2 Current Density and Ohm's Law
- 5-3 Electromotive Force and KirchhofT's Voltage Law
- 5-4 Equation of Continuity and KirchhofT's Current Law
- 5-5 Power Dissipation and Joule's Law
- 5-6 Boundary Conditions for Current Density
- 5-7 Resistance Calculations

Review Questions

		I - I		
\mathbf{r}	rハ	n	וםו	ms
	ıv	v	G	IIIO

6 Static Magnetic Fields

- 6-1 Introduction
- 6-2 Fundamental Postulates of Magnetostatics in Free Space
- 6-3 Vector Magnetic Potential
- 6-4 The Biot-Savart Law and Applications
- 6-5 The Magnetic Dipole
 - 6-5.1 Scalar Magnetic Potential
- 6-6 Magnetization and Equivalent Current Densities
 - 6-6.1 Equivalent Magnetization Charge Densities
- 6-7 Magnetic Field Intensity and Relative Permeability
- 6-8 Magnetic Circuits
- 6-9 Behavior of Magnetic Materials
- 6-10 Boundary Conditions for Magnetostatic Fields
- 6-11 Inductances and Inductors
- 6-12 Magnetic Energy
 - 6-12.1 Magnetic Energy in Terms of Field Quantities
- 6-13 Magnetic Forces and Torques
 - 6-13.1 Hall Effect
 - 6-13.2 Forces and Torques on Current-Carrying Conductors
 - 6-13.3 Forces and Torques in Terms of StoredMagnetic Energy
 - 6-13.4 Forces and Torques in Terms of Mutual Inductance

Review Questions

Problems

7 Time-Varying Fields and Maxwell's Equations

- 7-1 Introduction
- 7-2 Faraday's Law of Electromagnetic Induction
 - 7-2.1 A Stationary Circuit in a Time-VaryingMagnetic Field

- 7-2.2 Transformers
- 7-2.3 A Moving Conductor in a Static Magnetic Field
- 7-2.4 A Moving Circuit in a Time-Varying Magnetic Field
- 7-3 Maxwell's Equations
 - 7-3.1 Integral Form of Maxwell's Equations
- 7-4 Potential Functions
- 7-5 Electromagnetic Boundary Conditions
 - 7-5.1 Interface between Two Lossless Linear Media
 - 7-5.2 Interface between a Dielectric and aPerfect Conductor
- 7-6 Wave Equations and Their Solutions
 - 7-6.1 Solution of Wave Equations for Potentials
 - 7-6.2 Source-Free Wave Equations
- 7-7 Time-Harmonic Fields
 - 7-7.1 The Use of PhasorsA Review
 - 7-7.2 Time-Harmonic Electromagnetics
 - 7-7.3 Source-Free Fields in Simple Media
 - 7-7.4 The Electromagnetic Spectrum
- **Review Questions**
- **Problems**
- 8 Plane Electromagnetic Waves
 - 8-1 Introduction
 - 8-2 Plane Waves in Lossless Media
 - 8-2.1 Doppler Effect
 - 8-2.2 Transverse Electromagnetic Waves
 - 8-2.3 Polarization of Plane Waves
 - 8-3 Plane Waves in Lossy Media
 - 8-3.1 Low-Loss Dielectrics
 - 8-3.2 Good Conductors
 - 8-3.3 Ionized Gases

- 8-4 Group Velocity
- 8-5 Flow of Electromagnetic Power and the Poynting Vector
 - 8-5.1 Instantaneous and Average Power Densities
- 8-6 Normal Incidence at a Plane Conducting Boundary
- 8-7 Oblique Incidence at a Plane Conducting Boundary
 - 8-7.1 Perpendicular Polarization
 - 8-7.2 Parallel Polarization
- 8-8 Normal Incidence at a Plane Dielectric Boundary
- 8-9 Normal Incidence at Multiple Dielectric Interfaces
 - 8-9.1 Wave Impedance of the Total Field
 - 8-9.2 Impedance Transformation with Multiple Dielectrics
- 8-10 Oblique Incidence at a Plane Dielectric Boundary
 - 8-10.1 Total Reflection
 - 8-10.2 Perpendicular Polarization
 - 8-10.3 Parallel Polarization

Review Questions

Problems

- 9 Theory and Applications of Transmission Lines
 - 9-1 Introduction
 - 9-2 Transverse Electromagnetic Wave along a Parallel-PlateTransmission Line
 - 9-2.1 Lossy Parallel-Plate Transmission Lines
 - 9-2.2 Microstrip Lines
 - 9-3 General Transmission-Line Equations
 - 9-3.1 Wave Characteristics on an InfiniteTransmission Line
 - 9-3.2 Transmission-Line Parameters
 - 9-3.3 Attenuation Constant from Power Relations
 - 9-4 Wave Characteristics on Finite Transmission Lines

- 9-4.1 Transmission Lines as Circuit Elements
- 9-4.2 Lines with Resistive Termination
- 9-4.3 Lines with Arbitrary Termination
- 9-4.4 Transmission-Line Circuits

9-5 Transients on Transmission Lines

- 9-5.1 Reflection Diagrams
- 9-5.2 Pulse Excitation
- 9-5.3 Initially Charged Line
- 9-5.4 Line with Reactive Load

9-6 The Smith Chart

- 9-6.1 Smith-Chart Calculations for Lossy Lines
- 9-7 Transmission-Line Impedance Matching
 - 9-7.1 Impedance Matching by Quarter-Wave Transformer
 - 9-7.2 Single-Stub Matching
 - 9-7.3 Double-Stub Matching

Review Questions

Problems

10 Waveguides and Cavity Resonators

- 10-1 Introduction
- 10-2 General Wave Behaviors along Uniform Guiding Structures
 - 10-2.1 Transverse Electromagnetic Waves
 - 10-2.2 Transverse Magnetic Waves
 - 10-2.3 Transverse Electric Waves

10-3 Parallel-Plate Waveguide

- 10-3.1 TM Waves between Parallel Plates
- 10-3.2 TE Waves between Parallel Plates
- 10-3.3 Energy-Transport Velocity
- 10-3.4 Attenuation in Parallel-Plate Waveguides
- 10-4 Rectangular Waveguides

- 10-4.1 TM Waves in Rectangular Waveguides
- 10-4.2 TE Waves in Rectangular Waveguides
- 10-4.3 Attenuation in Rectangular Waveguides
- 10-4.4 Discontinuities in Rectangular Waveguides

10-5 Circular Waveguides

- 10-5.1 Bessel's Differential Equation and Bessel Functions
- 10-5.2 TM Waves in Circular Waveguides
- 10-5.3 TE Waves in Circular Waveguides

10-6 Dielectric Waveguides

- 10-6.1 TM Waves along a Dielectric Slab
- 10-6.2 TE Waves along a Dielectric Slab
- 10-6.3 Additional Comments on Dielectric Waveguides

10-7 Cavity Resonators

- 10-7.1 Rectangular Cavity Resonators
- 10-7.2 Quality Factor of Cavity Resonator
- 10-7.3 Circular Cavity Resonator

Review Questions

Problems

11 Antennas and Radiating Systems

- 11-1 Introduction
- 11-2 Radiation Fields of Elemental Dipoles
 - 11-2.1 The Elemental Electric Dipole
 - 11-2.2 The Elemental Magnetic Dipole
- 11-3 Antenna Patterns and Antenna Parameters
- 11-4 Thin Linear Antennas
 - 11-4.1 The Half-Wave Dipole
 - 11-4.2 Effective Antenna Length
- 11-5 Antenna Arrays
 - 11-5.1 Two-Element Arrays

11-5.2 General	Uniform	Linear	Array	/S
----------------	---------	--------	-------	----

11-6 Receiving Antennas

- 11-6.1 Internal Impedance and Directional Pattern
- 11-6.2 Effective Area
- 11-6.3 Backscatter Cross Section

11-7 Transmit-Receive Systems

- 11-7.1 Friis Transmission Formula and Radar Equation
- 11-7.2 Wave Propagation near Earth's Surface

11-8 Some Other Antenna Types

- 11-8.1 Traveling-Wave Antennas
- 11-8.2 Helical Antennas
- 11-8.3 Yagi-Uda Antenna
- 11-8.4 Broadband Antennas

11-9 Aperture Radiators

References

Review Questions

Problems

Appendixes

A Symbols and Units

- A-I Fundamental SI (Rationalized MKSA) Units
- A-2 Derived Quantities
- A-3 Multiples and Submultiples of Units

B Some Useful Material Constants

- **B-I Constants of Free Space**
- B-2 Physical Constants of Electron and Proton
- B-3 Relative Permittivities (Dielectric Constants)
- **B-4 Conductivities**
- **B-5** Relative Permeabilities

C Index of Tables
General Bibliography
Answers to Selected Problems
Index