

Pearson New International Edition

University Physics with Modern Physics
Hugh D. Young Roger A. Freedman
A. Lewis Ford
Thirteenth Edition

Pearson New International Edition

University Physics with Modern Physics
Hugh D. Young Roger A. Freedman
A. Lewis Ford
Thirteenth Edition

University Physics with Modern Physics Technology Update, Volume 1 (Chs. 1-20): Pearson New International Edition PDF eBook

Table of Contents

Cover

Table of Contents

Preface

- 1. Units, Physical Quantities, and Vectors
 - 1. The Nature of Physics
 - 2. Solving Physics Problems
 - 3. Standards and Units
 - 4. Unit Consistency and Conversion
 - 5. Uncertainty and Significant Figures
 - 6. Estimates and Orders of Magnitude
 - 7. Vectors and Vector Addition
 - 8. Components of Vectors
 - 9. Unit Vectors
 - 10. Products of Vectors

Chapter Summary

Problem Set (13/e): Units, Physical Quantities, and Vectors

- 2. Motion Along a Straight Line
 - 1. Displacement, Time, and Average Velocity
 - 2. Instantaneous Velocity
 - 3. Average and Instantaneous Acceleration
 - 4. Motion with Constant Acceleration
 - 5. Freely Falling Bodies
 - 6. Velocity and Position by Integration

Chapter Summary

Problem Set (13/e): Motion Along a Straight Line

- 3. Motion in Two or Three Dimensions
 - 1. Position and Velocity Vectors

- 2. The Acceleration Vector
- 3. Projectile Motion
- 4. Motion in a Circle
- 5. Relative Velocity

Chapter Summary

Problem Set (13/e): Motion in Two or Three Dimensions

- 4. Newton's Laws of Motion
 - 1. Force and Interactions
 - 2. Newton's First Law
 - 3. Newton's Second Law
 - 4. Mass and Weight
 - 5. Newton's Third Law
 - 6. Free-Body Diagram

Chapter Summary

Problem Set (13/e): Newton's Laws of Motion

- 5. Applying Newton's Laws
 - 1. Using Newton's First Law: Particles in Equilibrium
 - 2. Using Newton's Second Law: Dynamics of Particles
 - 3. Frictional Forces
 - 4. Dynamics of Circular Motion
 - 5. The Fundamental Forces of Nature

Chapter Summary

Problem Set (13/e): Applying Newton's Laws

- 6. Work and Kinetic Energy
 - 1. Work
 - 2. Kinetic Energy and the Work-Energy Theorem
 - 3. Work and Energy with Varying Forces
 - 4. Power

Chapter Summary

Problem Set (13/e): Work and Kinetic Energy

- 7. Potential Energy and Energy Conservation
 - 1. Gravitational Potential Energy
 - 2. Elastic Potential Energy

- 3. Conservative and Nonconservative Forces
- 4. Force and Potential Energy
- 5. Energy Diagrams

Chapter Summary

Problem Set (13/e): Potential Energy and Energy Conservation

- 8. Momentum, Impulse, and Collisions
 - 1. Momentum and Impulse
 - 2. Conservation of Momentum
 - 3. Momentum Conservation and Collisions
 - 4. Elastic Collisions
 - 5. Center of Mass
 - 6. Rocket Propulsion

Chapter Summary

Problem Set (13/e): Momentum, Impulse, and Collisions

- 9. Rotation of Rigid Bodies
 - 1. Angular Velocity and Acceleration
 - 2. Rotation with Constant Angular Acceleration
 - 3. Relating Linear and Angular Kinematics
 - 4. Energy in Rotational Motion
 - 5. Parallel-Axis Theorem
 - 6. Moment-of-Inertia Calculations

Chapter Summary

Problem Set (13/e): Rotation of Rigid Bodies

- 10. Dynamics of Rotational Motion
 - 1. Torque
 - 2. Torque and Angular Acceleration for a Rigid Body
 - 3. Rigid-Body Rotation About a Moving Axis
 - 4. Work and Power in Rotational Motion
 - 5. Angular Momentum
 - 6. Conservation of Angular Momentum
 - 7. Gyroscopes and Precession

Chapter Summary

Problem Set (13/e): Dynamics of Rotational Motion

11. Equilibrium and Elasticity

- 1. Conditions for Equilibrium
- 2. Center of Gravity
- 3. Solving Rigid-Body Equilibrium Problems
- 4. Stress, Strain, and Elastic Moduli
- 5. Elasticity and Plasticity

Chapter Summary

Problem Set (13/e): Equilibrium and Elasticity

12. Fluid Mechanics

- 1. Density
- 2. Pressure in a Fluid
- 3. Buoyancy
- 4. Fluid Flow
- 5. Bernoulli's Equation
- 6. Viscosity and Turbulence

Chapter Summary

Problem Set (13/e): Fluid Mechanics

13. Gravitation

- 1. Newton's Law of Gravitation
- 2. Weight
- 3. Gravitational Potential Energy
- 4. The Motion of Satellites
- 5. Kepler's Laws and the Motion of Planets
- 6. Spherical Mass Distributions
- 7. Apparent Weight and the Earth's Rotation
- 8. Black Holes

Chapter Summary

Problem Set (13/e): Gravitation

14. Periodic Motion

- 1. Describing Oscillation
- 2. Simple Harmonic Motion
- 3. Energy in Simple Harmonic Motion
- 4. Applications of Simple Harmonic Motion

- 5. The Simple Pendulum
- 6. The Physical Pendulum
- 7. Damped Oscillations
- 8. Forced Oscillations and Resonance

Chapter Summary

Problem Set (13/e): Periodic Motion

15. Mechanical Waves

- 1. Types of Mechanical Waves
- 2. Periodic Waves
- 3. Mathematical Description of a Wave
- 4. Speed of a Transverse Wave
- 5. Energy in Wave Motion
- 6. Wave Interference, Boundary Conditions, and Superposition
- 7. Standing Waves on a String
- 8. Normal Modes of a String

Chapter Summary

Problem Set (13/e): Mechanical Waves

16. Sound and Hearing

- 1. Sound Waves
- 2. Speed of Sound Waves
- 3. Sound Intensity
- 4. Standing Sound Waves and Normal Modes
- 5. Resonance and Sound
- 6. Interference of Waves
- 7. Beats
- 8. The Doppler Effect
- 9. Shock Waves

Chapter Summary

Problem Set (13/e): Sound and Hearing

17. Temperature and Heat

- 1. Temperature and Thermal Equilibrium
- 2. Thermometers and Temperature Scales
- 3. Gas Thermometers and the Kelvin Scale

- 4. Thermal Expansion
- 5. Quantity of Heat
- 6. Calorimetry and Phase Changes
- 7. Mechanisms of Heat Transfer

Chapter Summary

Problem Set (13/e): Temperature and Heat

18. Thermal Properties of Matter

- 1. Equations of State
- 2. Molecular Properties of Matter
- 3. Kinetic-Molecular Model of an Ideal Gas
- 4. Heat Capacities
- 5. Molecular Speeds
- 6. Phases of Matter

Chapter Summary

Problem Set (13/e): Thermal Properties of Matter

19. The First Law of Thermodynamics

- 1. Thermodynamic Systems
- 2. Work Done During Volume Changes
- 3. Paths Between Thermodynamic States
- 4. Internal Energy and the First Law of Thermodynamics
- 5. Kinds of Thermodynamic Processes
- 6. Internal Energy of an Ideal Gas
- 7. Heat Capacities of an Ideal Gas
- 8. Adiabatic Processes for an Ideal Gas

Chapter Summary

Problem Set (13/e): The First Law of Thermodynamics

20. The Second Law of Thermodynamics

- 1. Directions of Thermodynamic Processes
- 2. Heat Engines
- 3. Internal-Combustion Engines
- 4. Refrigerators
- 5. The Second Law of Thermodynamics
- 6. The Carnot Cycle

7. Entropy

8. Microscopic Interpretation of Entropy

Chapter Summary

Problem Set (13/e): The Second Law of Thermodynamics

Appendix: The International System of Units

Appendix: Periodic Table of the Elements

Appendix: Unit Conversion Factors

Problem Set (13/e): Units, Physical Quantities, and Vectors

Problem Set (13/e): Motion Along a Straight Line

Problem Set (13/e): Motion in Two or Three Dimensions

Problem Set (13/e): Newton's Laws of Motion

Problem Set (13/e): Applying Newton's Laws

Problem Set (13/e): Work and Kinetic Energy

Problem Set (13/e): Potential Energy and Energy Conservation

Problem Set (13/e): Momentum, Impulse, and Collisions

Problem Set (13/e): Rotation of Rigid Bodies

Problem Set (13/e): Dynamics of Rotational Motion

Problem Set (13/e): Equilibrium and Elasticity

Problem Set (13/e): Fluid Mechanics

Problem Set (13/e): Gravitation

Problem Set (13/e): Periodic Motion

Problem Set (13/e): Mechanical Waves

Problem Set (13/e): Sound and Hearing

Problem Set (13/e): Temperature and Heat

Problem Set (13/e): Thermal Properties of Matter

Problem Set (13/e): The First Law of Thermodynamics

Problem Set (13/e): The Second Law of Thermodynamics

Index

