

Signals, Systems, and Transforms

FIFTH EDITION

Charles L. Phillips • John M. Parr • Eve A. Riskin

SIGNALS, SYSTEMS, AND TRANSFORMS

FIFTH EDITION

eBook Instant Access for Signals, Systems, & Transforms, Global Edition

Table of Contents

C	\cap	1/	Δ	r
v	u	v	\Box	

Title

Contents

Preface

- 1 Introduction
 - 1.1 Modeling
 - 1.2 Continuous-Time Physical Systems

Electric Circuits

Operational Amplifier Circuits

Simple Pendulum

DC Power Supplies

Analogous Systems

1.3 S amplers and Discrete-Time Physical Systems

Analog-to-Digital Converter

Numerical Integration

Picture in a Picture

Compact Discs

Sampling in Telephone Systems

Data-Acquisition System

- 1.4 MATLAB and Simulink
- 2 Continuous-Time Signals and Systems
 - 2.1 Transformations of Continuous-Time Signals

Time Transformations

Amplitude Transformations

2.2 Signal Characteristics

Even and Odd Signals

Periodic Signals

- 2.3 Common Signals in Engineering
- 2.4 Singularity Functions

Unit Step Function

Unit Impulse Function

- 2.5 Mathematical Functions for Signals
- 2.6 Continuous-Time Systems

Interconnecting Systems

Feedback System

2.7 Properties of Continuous-Time Systems

Stability

Linearity

Summary

Problems

- 3 Continuous-Time Linear Time-Invariant Systems
 - 3.1 I mpulse Representation of Continuous-Time Signals
 - 3.2 Convolution for Continuous-Time LTI Systems
 - 3.3 Properties of Convolution
 - 3.4 Properties of Continuous-Time LTI Systems

Memoryless Systems

Invertibility

Causality

Stability

Unit Step Response

3.5 Differential-Equation Models

Solution of Differential Equations

General Case

Relation to Physical Systems

3.6 Terms in the Natural Response

Stability

3.7 System Response for Complex-Exponential Inputs

Linearity

Complex Inputs for LTI Systems

Impulse Response

3.8 Block Diagrams

Direct Form I

Direct Form II

nth-Order Realizations

Practical Considerations

Summary

Problems

4 Fourier Series

4.1 A pproximating Periodic Functions

Periodic Functions

Approximating Periodic Functions

4.2 Fourier Series

Fourier Series

Fourier Coefficients

4.3 Fourier Series and Frequency Spectra

Frequency Spectra

- 4.4 Properties of Fourier Series
- 4.5 System Analysis

4.6 Fourier Series Transformations

Amplitude Transformations

Time Transformations

Summary

Problems

5 The Fourier Transform

- 5.1 Definition of the Fourier Transform
- 5.2 Properties of the Fourier Transform

Linearity

Time Scaling

Time Shifting

Time Reversal

Time Transformation

Duality

Convolution

Frequency Shifting

Time Integration

Time Differentiation

Frequency Differentiation

Symmetry

Summary

5.3 Fourier Transforms of Time Functions

DC Level

Unit Step Function

Switched Cosine

Pulsed Cosine

Exponential Pulse

Fourier Transforms of Periodic Functions

Summary

5.4 A pplication of the Fourier Transform

Frequency Response of Linear Systems

Frequency Spectra of Signals

Summary

5.5 E nergy and Power Density Spectra

Energy Density Spectrum

Power Density Spectrum

Power and Energy Transmission

Summary

Summary

Problems

6 Applications of the Fourier Transform

- 6.1 I deal Filters
- 6.2 Real Filters

RC Low-Pass Filter

Butterworth Filter

Bandpass Filters

Active Filters

Summary

6.3 Bandwidth Relationships

6.4 Sampling Continuous-Time Signals

Impulse Sampling

Shannons Sampling Theorem

Practical Sampling

6.5 R econstruction of Signals from Sample Data

Interpolating Function

Digital-to-Analog Conversion

Quantization Error

6.6 Sinusoidal Amplitude Modulation

Frequency-Division Multiplexing

6.7 Pulse-Amplitude Modulation

Time-Division Multiplexing

Flat-Top PAM

Summary

Problems

7 The Laplace Transform

- 7.1 Definitions of Laplace Transforms
- 7.2 Examples
- 7.3 Laplace Transforms of Functions
- 7.4 Laplace Transform Properties

Real Shifting

Differentiation

Integration

7.5 Additional Properties

Multiplication by t

Initial Value

Final Value

Time Transformation

7.6 R esponse of LTI Systems

Initial Conditions

Transfer Functions

Convolution

Transforms with Complex Poles

Functions with Repeated Poles

7.7 LTI Systems Characteristics

Causality

Stability

Invertibility

Frequency Response

Step Response

7.8 Bilateral Laplace Transform

Region of Convergence

Bilateral Transform from Unilateral Tables

Inverse Bilateral Laplace Transform

7.9 R elationship of the Laplace Transform to the Fourier Transform

Summary

Problems

8 State Variables for Continuous-Time Systems

- 8.1 State-Variable Modeling
- 8.2 Simulation Diagrams
- 8.3 Solution of State Equations

Laplace-Transform Solution

Convolution Solution

Infinite Series Solution

- 8.4 Properties of the State-Transition Matrix
- 8.5 Transfer Functions

Stability

8.6 Similarity Transformations

Transformations

Properties

Summary

Problems

9 Discrete-Time Signals and Systems

9.1 Discrete-Time Signals and Systems

Unit Step and Unit Impulse Functions

Equivalent Operations

9.2 Transformations of Discrete-Time Signals

Time Transformations

Amplitude Transformations

9.3 Characteristics of Discrete-Time Signals

Even and Odd Signals

Signals Periodic in n

Signals Periodic

- 9.4 Common Discrete-Time Signals
- 9.5 Discrete-Time Systems

Interconnecting Systems

9.6 Properties of Discrete-Time Systems

Systems with Memory

Invertibility

Inverse of a System

Causality

Stability

Time Invariance

Linearity

Summary

Problems

- 10 Discrete-Time Linear Time-Invariant Systems
 - 10.1 I mpulse Representation of Discrete-Time Signals
 - 10.2 Convolution for Discrete-Time Systems

Properties of Convolution

10.3 Properties of Discrete-Time LTI Systems

Memory

Invertibility

Causality

Stability

Unit Step Response

10.4 Difference-Equation Models

Difference-Equation Models

Classical Method

Solution by Iteration

10.5 Terms in the Natural Response

Stability

10.6 Block Diagrams

Two Standard Forms

10.7 System Response for Complex-Exponential Inputs

Linearity

Complex Inputs for LTI Systems

Stability

Sampled Signals

Impulse Response

Summary

Problems

11 The z-Transform

11.1 Definitions of z-Transforms

11.2 Examples

Two z-Transforms

Digital-Filter Example

11.3 z-Transforms of Functions

Sinusoids

11.4 z-Transform Properties

Real Shifting

Initial and Final Values

11.5 Additional Properties

Time Scaling

Convolution in Time

11.6 LTI System Applications

Transfer Functions

Inverse z-Transform

Complex Poles

Causality

Stability

Invertibility

Frequency Response

11.7 Bilateral z-Transform

Bilateral Transforms

Regions of Convergence

Inverse Bilateral Transforms

Summary

Problems

12 Fourier Transforms of Discrete-Time Signals

12.1 Discrete-Time Fourier Transform

z-Transform

12.2 Properties of the Discrete-Time Fourier Transform

Periodicity

Linearity

Time Shift

Frequency Shift

Time Reversal

Convolution in Time

Convolution in Frequency

Multiplication by n

Parsevals Theorem

12.3 Discrete-Time Fourier Transform of Periodic Sequences

12.4 Discrete Fourier Transform

Shorthand Notation for the DFT

Frequency Resolution of the DFT

Validity of the DFT

Summary

12.5 Fast Fourier Transform

Decomposition-in-Time Fast Fourier Transform Algorithm

Decomposition-in-Frequency Fast Fourier Transform

Summary

12.6 Applications of the Discrete Fourier Transform

Calculation of Fourier Transforms

Convolution

Filtering

Correlation

Energy Spectral Density Estimation

Summary

12.7 The Discrete Cosine Transform

Summary

Problems

13 State Variables for Discrete-Time Systems

13.1 State-Variable Modeling

- 13.2 Simulation Diagrams
- 13.3 Solution of State Equations

Recursive Solution

z-Transform Solution

- 13.4 Properties of the State Transition Matrix
- 13.5 Transfer Functions

Stability

13.6 Similarity Transformations

Properties

Summary

Problems

Appendices

A. Integrals and Trigonometric Identities

Integrals

Trigonometric Identities

B. Leibnitzs and LHôpitals Rules

Leibnitzs Rule

LHôpitals Rule

- C. Summation Formulas for Geometric Series
- D. Complex Numbers and Eulers Relation

Complex-Number Arithmetic

Eulers Relation

Conversion Between Forms

E. Solution of Differential Equations

Complementary Function

Particular Solution

General Solution

Repeated Roots

- F. Partial-Fraction Expansions
- G. Review of Matrices

Algebra of Matrices

Other Relationships

- H. Answers to Selected Problems
- I. Signals and Systems References

Index

Α

В

С

D

Ε

F

G

Н

.

J

М

Ν

0

Р

Q

R

S

Т

U

٧

W

Ζ