

Engineering Problem Solving with C++

Third Edition

Delores M. Etter Jeanine A. Ingber

ALWAYS LEARNING PEARSON

ENGINEERING PROBLEM SOLVING WITH C++

Third Edition

Delores M. Etter

Electrical Engineering Department Southern Methodist University, Dallas, TX

Jeanine A. Ingber

Accurate Solutions in Applied Physics, LLC

International Edition contributions by Piyali Sengupta

Engineering Problem Solving with C++ International Edition PDF eBook

Table of Contents

$\overline{}$	_		_	
(;	0	V	P	r

Contents

Preface

Chapter 1: Introduction to Computing and Engineering Problem Solving

- 1.1 Historical Perspective
- 1.2 Recent Engineering Achievements

Changing Engineering Environment

1.3 Computing Systems

Computer Hardware

Computer Software

1.4 Data Representation and Storage

Number Systems

Data Types and Storage

1.5 An Engineering Problem-Solving Methodology

Summary

Chapter 2: Simple C++ Programs

Engineering Challenge: Vehicle Performance

- 2.1 Program Structure
- 2.2 Constants and Variables

Scientific Notation

Numeric Data Types

Boolean Data Type

Character Data Type

String Data

Symbolic Constants

2.3 C++ Classes

Class Declaration

Class Implementation

2.4 C++ Operators

Assignment Operator

Arithmetic Operators

Precedence of Operators

Overflow and Underflow

Increment and Decrement Operators

Abbreviated Assignment Operators

2.5 Standard Input and Output

The cout Object

Stream Objects

Manipulators

The cin Object

2.6 Building C++ Solutions with IDEs: NetBeans

NetBeans

2.7 Basic Functions Included in the C++ Standard Library

Elementary Math Functions

Trigonometric Functions

Hyperbolic Functions

Character Functions

- 2.8 Problem Solving Applied: Velocity Computation
- 2.9 System Limitations

Summary

Chapter 3: Control Structures: Selection

Engineering Challenge: Global Change

3.1 Algorithm Development

Top-Down Design

3.2 Structured Programming

Pseudocode

Evaluation of Alternative Solutions

3.3 Conditional Expressions

Relational Operators

Logical Operators

Precedence and Associativity

3.4 Selection Statements: if Statement

Simple if Statements

if/else Statement

- 3.5 Numerical Technique: Linear Interpolation
- 3.6 Problem Solving Applied: Freezing Temperature of Seawater
- 3.7 Selection Statements: switch Statement
- 3.8 Building C++ Solutions with IDEs: NetBeans
 NetBeans
- 3.9 Defining Operators for Programmer-Defined Data Types Summary

Chapter 4: Control Structures: Repetition

Engineering Challenge: Data Collection

4.1 Algorithm Development

Pseudocode and Flowchart Description

4.2 Repetition Structures

while Loop

do/while Loop

for Loop

- 4.3 Problem Solving Applied: GPS
- 4.4 break and continue Statements
- 4.5 Structuring Input Loops

Counter-Controlled Loops

Sentinel-Controlled Loop

End-Of-Data Loop

- 4.6 Problem Solving Applied: Weather Balloons
- 4.7 Building C++ Solutions with IDEs: Microsoft Visual C++

Microsoft Visual C++

Summary

Chapter 5: Working with Data Files

Engineering Challenge: Weather Prediction

5.1 Defining File Streams

Stream Class Hierarchy

ifstream Class

ofstream Class

5.2 Reading Data Files

Specified Number of Records

Trailer or Sentinel Signals

End-of-File

- 5.3 Generating a Data File
- 5.4 Problem Solving Applied: Data Filters. Modifying an HTML File
- 5.5 Error Checking

The Stream State

- 5.6 Numerical Technique: Linear Modeling
- 5.7 Problem Solving Applied: Ozone Measurements

Summary

Chapter 6: Modular Programming with Functions

Engineering Challenge: Simulation

6.1 Modularity

6.2 Programmer-Defined Functions

Function Definition

Solution 1

Solution 2

Function Prototype

6.3 Parameter Passing

Pass by Value

Pass by Reference

Storage Class and Scope

- 6.4 Problem Solving Applied: Calculating a Center of Gravity
- 6.5 Random Numbers

Integer Sequences

Floating-Point Sequences

- 6.6 Problem Solving Applied: Instrumentation Reliability
- 6.7 Defining Class Methods

Public Interface

Accessor Methods

Mutator Methods

6.8 Problem Solving Applied: Design of Composite Materials

Solution 1

Solution 2

6.9 Numerical Technique: Roots of Polynomials

Polynomial Roots

Incremental-Search Technique

6.10 Problem Solving Applied: System Stability

	Newton	Raphs	son M	ethod
--	--------	-------	-------	-------

6.11 Numerical Technique: Integration

Integration Using the Trapezoidal Rule

Summary

Chapter 7: One-Dimensional Arrays

Engineering Challenge: Tsunami Warning Systems

7.1 Arrays

Definition and Initialization

Pseudocode

Computation and Output

Function Arguments

- 7.2 Problem Solving Applied: Hurricane Categories
- 7.3 Statistical Measurements

Simple Analysis

Variance and Standard Deviation

Custom Header Files

- 7.4 Problem Solving Applied: Speech Signal Analysis
- 7.5 Sorting and Searching Algorithms

Selection Sort

Search Algorithms

Unordered Lists

Ordered Lists

- 7.6 Problem Solving Applied: Tsunami Warning Systems
- 7.7 Character Strings

C Style String Definition and I/O

String Functions

- 7.8 The string Class
- 7.9 The vector class

Parameter Passing

7.10 Problem Solving Applied: Calculating Probabilities

Summary

Chapter 8: Two-Dimensional Arrays

Engineering Challenge: Terrain Navigation

8.1 Two-Dimensional Arrays

Declaration and Initialization

Computations and Output

Function Arguments

- 8.2 Problem Solving Applied: Terrain Navigation
- 8.3 Two-Dimensional Arrays and the vector class

Function Arguments

8.4 Matrices

Determinant

Transpose

Matrix Addition and Subtraction

Matrix Multiplication

8.5 Numerical Technique: Solution to Simultaneous Equations

Graphical Interpretation

Gauss Elimination

- 8.6 Problem Solving Applied: Electrical Circuit Analysis
- 8.7 Higher Dimensional Arrays

Summary

Chapter 9: An Introduction to Pointers

Engineering Challenge: Weather Patterns

9.1 Addresses and Pointers

Address Operator

Pointer Assignment

Pointer Arithmetic

9.2 Pointers to Array Elements

One-Dimensional Arrays

Character Strings

Pointers as Function Arguments

- 9.3 Problem Solving Applied: El Nino-Southern Oscillation Data
- 9.4 Dynamic Memory Allocation

The new Operator

Dynamically Allocated Arrays

The delete Operator

- 9.5 Problem Solving Applied: Seismic Event Detection
- 9.6 Common Errors Using new and delete
- 9.7 Linked Data Structures

Linked Lists

Stacks

Queue

9.8 The C++ Standard Template Library

The list class

The stack class

The queue class

9.9 Problem Solving Applied: Concordance of a Text File

Summary

Chapter 10: Advanced Topics

Engineering Challenge: Artificial Intelligence

10.1 Generic Programming

Function Templates

10.2 Data Abstraction

Overloading Operators

The Pixel class

Arithmetic Operators

friend Functions

Validating Objects

Bitwise Operators

10.3 Problem Solving Applied: Color Image Processing

10.4 Recursion

Factorial Function

Fibonacci Sequence

The BinaryTree class

10.5 Class Templates

10.6 Inheritance

The Rectangle class

The Square class

The Cube class

10.7 virtual Methods

10.8 Problem Solving Applied: Iterated Prisoner's Dilemma

Summary

Appendix A: C++ Standard Library

Appendix B: ASCII Character Codes

Appendix C: Using MATLAB to Plot Data from ASCII Files

C++ Program to Generate a Data File

ASCII Data File Generated by the C++ Program

Generating a Plot with MATLAB

Appendix D: References

Appendix E: Practice! Solutions

Index

