Introduction to Finite Elements in Engineering

Table of Contents

Cover
PREFACE
ABOUT THE AUTHORS
Contents

1 FUNDAMENTAL CONCEPTS
 1.1 Introduction
 1.2 Historical Background
 1.3 Outline of Presentation
 1.4 Stresses and Equilibrium
 1.5 Boundary Conditions
 1.6 Strain-Displacement Relations
 1.7 Stress-Strain Relations
 Special Cases
 1.8 Temperature Effects
 1.9 Potential Energy and Equilibrium: The Rayleigh-Ritz Method
 Potential Energy, Φ;
 Rayleigh-Ritz Method
 1.10 Galerkin's Method
 1.11 Saint Venant's Principle
 1.12 Von Mises Stress
 1.13 Principle of Superposition
Table of Contents

1.14 Computer Programs
1.15 Conclusion
Historical References
Problems

2 MATRIX ALGEBRA AND GAUSSIAN ELIMINATION

2.1 Matrix Algebra
 - Row and Column Vectors
 - Addition and Subtraction
 - Multiplication by a Scalar
 - Matrix Multiplication
 - Transposition
 - Differentiation and Integration
 - Square Matrix
 - Diagonal Matrix
 - Identity Matrix
 - Symmetric Matrix
 - Upper Triangular Matrix
 - Determinant of a Matrix
 - Matrix Inversion
 - Eigenvalues and Eigenvectors
 - Positive Definite Matrix
 - Cholesky Decomposition

2.2 Gaussian Elimination
 - General Algorithm for Gaussian Elimination
 - Symmetric Matrix
 - Symmetric Banded Matrices
 - Solution with Multiple Right Sides
 - Gaussian Elimination with Column Reduction
 - Skyline Solution
Table of Contents

Frontal Solution

2.3 Conjugate Gradient Method for Equation Solving
 Conjugate Gradient Algorithm
 Input Data/Output

Problems
 Program Listings

3 ONE-DIMENSIONAL PROBLEMS
 3.1 Introduction
 3.2 Finite Element Modeling
 Element Division
 Numbering Scheme
 3.3 Shape Functions and Local Coordinates
 3.4 The Potential-Energy Approach
 Element Stiffness Matrix
 Force Terms
 3.5 The Galerkin Approach
 Element Stiffness
 Force Terms
 3.6 Assembly of the Global Stiffness Matrix and Load Vector
 3.7 Properties of K
 3.8 The Finite Element Equations: Treatment of Boundary Conditions
 Types of Boundary Conditions
 Elimination Approach
 Penalty Approach
 Multipoint Constraints
 3.9 Quadratic Shape Functions
 3.10 Temperature Effects
Table of Contents

3.11 Problem Modeling and Boundary Conditions
- Problem in Equilibrium
- Symmetry
- Two Elements with Same End Displacements
- Problem with a Closing Gap
- Input Data/Output

Problems
- Program Listing

4 TRUSSES
4.1 Introduction
4.2 Plane Trusses
- Local and Global Coordinate Systems
- Formulas for Calculating \(l \) and \(m \)
- Element Stiffness Matrix
- Stress Calculations
- Temperature Effects
4.3 Three-Dimensional Trusses
4.4 Assembly of Global Stiffness Matrix for the Banded and Skyline Solutions
- Assembly for Banded Solution
- Skyline Assembly
4.5 Problem Modeling and Boundary Conditions
- Inclined Support in Two Dimensions
- Inclined Support in Three Dimensions
- Line Constraint
- Plane Constraint
- Symmetry and Antisymmetry
- Input Data/Output

Problems
Table of Contents

Program Listing

5 BEAMS AND FRAMES

5.1 Introduction
 Potential-Energy Approach
 Galerkin Approach

5.2 Finite Element Formulation
 Element Stiffness
 Direct Approach

5.3 Load Vector

5.4 Boundary Considerations

5.5 Shear Force and Bending Moment

5.6 Beams on Elastic Supports

5.7 Plane Frames

5.8 Three-Dimensional Frames

5.9 Problem Modeling and Boundary Conditions

5.10 Some Comments
 Input Data/Output

Problems

Program Listings

6 TWO-DIMENSIONAL PROBLEMS USING CONSTANT STRAIN TRIANGLES

6.1 Introduction

6.2 Finite Element Modeling

6.3 Constant Strain Triangle (CST)
 Isoparametric Representation
 Potential-Energy Approach
 Element Stiffness
 Force Terms
Table of Contents

Integration Formula on a Triangle
Galerkin Approach
Stress Calculations
Temperature Effects

6.4 Problem Modeling and Boundary Conditions
Some General Comments on Dividing into Elements

6.5 Patch Test and Convergence
Patch Test

6.6 Orthotropic Materials
Temperature Effects
Input Data/Output

Problems
Program Listing

7 AXISYMMETRIC SOLIDS SUBJECTED TO AXISYMMETRIC LOADING

7.1 Introduction

7.2 Axisymmetric Formulation

7.3 Finite Element Modeling: Triangular Element
Potential Energy Approach
Body Force Term
Rotating Flywheel
Surface Traction
Galerkin Approach
Stress Calculations
Temperature Effects

7.4 Problem Modeling and Boundary Conditions
Cylinder Subjected to Internal Pressure
Infinite Cylinder
Table of Contents

Press Fit on a Rigid Shaft
Press Fit on an Elastic Shaft
Belleville Spring
Thermal Stress Problem
Input Data/Output

Problems
Program Listing

8 TWO-DIMENSIONAL ISOPARAMETRIC ELEMENTS AND NUMERICAL INTEGRATION

8.1 Introduction

8.2 The Four-Node Quadrilateral
 Shape Functions
 Element Stiffness Matrix
 Element Force Vectors

8.3 Numerical Integration
 Two-Dimensional Integrals
 Stiffness Integration
 Stress Calculations

8.4 Higher Order Elements
 Nine-Node Quadrilateral
 Eight-Node Quadrilateral
 Six-Node Triangle
 Integration on a Triangle
 Symmetric Points
 Integration on a Triangle
 Degenerate Quadrilateral

8.5 Four-Node Quadrilateral for Axisymmetric Problems

8.6 Conjugate Gradient Implementation of the Quadrilateral Element

8.7 Concluding Remarks and Convergence

8.8 References for Convergence
9 THREE-DIMENSIONAL PROBLEMS IN STRESS ANALYSIS

9.1 Introduction
9.2 Finite Element Formulation
 Element Stiffness
 Force Terms
9.3 Stress Calculations
9.4 Mesh Preparation
9.5 Hexahedral Elements and Higher Order Elements
9.6 Problem Modeling
9.7 Frontal Method for Finite Element Matrices
 Connectivity and Prefront Routine
 Element Assembly and Consideration of Specified dof
 Elimination of Completed dof
 Backsubstitution
 Consideration of Multipoint Constraints
Input Data/Output
Problems
 Program Listings

10 SCALAR FIELD PROBLEMS

10.1 Introduction
10.2 Steady-State Heat Transfer
 One-Dimensional Heat Conduction
 One-Dimensional Heat Transfer in Thin Fins
 Two-Dimensional Steady-State Heat Conduction
 Two-Dimensional Fins
Table of Contents

Preprocessing for Program HEAT2D

10.3 Torsion
 Triangular Element
 Galerkin Approach[^2]

10.4 Potential Flow, Seepage, Electric and Magnetic Fields, and Fluid Flow in Ducts
 Potential Flow
 Seepage
 Electrical and Magnetic Field Problems
 Fluid Flow in Ducts
 Acoustics
 Boundary Conditions
 One-Dimensional Acoustics
 One-Dimensional Axial Vibrations
 Two-Dimensional Acoustics

10.5 Conclusion
 Input Data/Output

Problems
 Program Listings

11 DYNAMIC CONSIDERATIONS

11.1 Introduction

11.2 Formulation
 Solid Body with Distributed Mass

11.3 Element Mass Matrices

11.4 Evaluation of Eigenvalues and Eigenvectors
 Properties of Eigenvectors
 Eigenvalue-Eigenvector Evaluation
 Inverse Iteration Method
Table of Contents

Generalized Jacobi Method
Tridiagonalization and Implicit Shift Approach
Bringing Generalized Problem to Standard Form
Tridiagonalization
Implicit Symmetric QR Step with Wilkinson Shift for Diagonalization\(^{(2)}\)

11.5 Interfacing with Previous Finite Element Programs and a Program for Determining Critical Speeds of Shafts

11.6 Guyan Reduction

11.7 Rigid Body Modes

11.8 Conclusion
 Input Data/Output

Problems
 Program Listings

12 PREPROCESSING AND POSTPROCESSING

12.1 Introduction

12.2 Mesh Generation
 Region and Block Representation
 Block Corner Nodes, Sides, and Subdivisions

12.3 Postprocessing
 Deformed Configuration and Mode Shape
 Contour Plotting
 Nodal Values from Known Constant Element Values for a Triangle
 Least-Squares Fit for a Four-Noded Quadrilateral

12.4 Conclusion
 Input Data/Output

Problems
 Program Listings

APPENDIX Proof of \(dA = \det Jd\)
Table of Contents

BIBLIOGRAPHY
ANSWERS TO SELECTED PROBLEMS
INDEX