Power Electronics: Devices, Circuits, and Applications

Table of Contents

Cover
Title
Contents
Preface
About the Author
Chapter 1 Introduction
 1.1 Applications of Power Electronics
 1.2 History of Power Electronics
 1.3 Types of Power Electronic Circuits
 1.4 Design of Power Electronics Equipment
 1.5 Determining the Root-Mean-Square Values of Waveforms
 1.6 Peripheral Effects
 1.7 Characteristics and Specifications of Switches
 1.7.1 Ideal Characteristics
 1.7.2 Characteristics of Practical Devices
 1.7.3 Switch Specifications
 1.8 Power Semiconductor Devices
 1.9 Control Characteristics of Power Devices
 1.10 Device Choices
 1.11 Power Modules
 1.12 Intelligent Modules
Table of Contents

1.13 Power Electronics Journals and Conferences
Summary
References
Review Questions
Problems

PART I Power Diodes and Rectifiers
Chapter 2 Power Diodes and Switched RLC Circuits

2.1 Introduction
2.2 Semiconductor Basics
2.3 Diode Characteristics
2.4 Reverse Recovery Characteristics
2.5 Power Diode Types
 2.5.1 General-Purpose Diodes
 2.5.2 Fast-Recovery Diodes
 2.5.3 Schottky Diodes
2.6 Silicon Carbide Diodes
2.7 Silicon Carbide Schottky Diodes
2.8 Spice Diode Model
2.9 Series-Connected Diodes
2.10 Parallel-Connected Diodes
2.11 Diode Switched RC Load
2.12 Diode Switched RL Load
2.13 Diode Switched LC Load
2.14 Diode Switched RLC Load
2.15 Frewheeling Diodes with Switched RL Load
2.16 Recovery of Trapped Energy with a Diode
Summary
Table of Contents

References
Review Questions
Problems

Chapter 3 Diode Rectifiers

3.1 Introduction
3.2 Performance Parameters
3.3 Single-Phase Full-Wave Rectifiers
3.4 Single-Phase Full-Wave Rectifier with RL Load
3.5 Single-Phase Full-Wave Rectifier with a Highly Inductive Load
3.6 Multiphase Star Rectifiers
3.7 Three-Phase Bridge Rectifiers
3.8 Three-Phase Bridge Rectifier with RL Load
3.9 Three-Phase Rectifier with a Highly Inductive Load
3.10 Comparisons of Diode Rectifiers
3.11 Rectifier Circuit Design
3.12 Output Voltage with LC Filter
3.13 Effects of Source and Load Inductances
3.14 Practical Considerations for Selecting Inductors and Capacitors
 3.14.1 AC Film Capacitors
 3.14.2 Ceramic Capacitors
 3.14.3 Aluminum Electrolytic Capacitors
 3.14.4 Solid Tantalum Capacitors
 3.14.5 Supercapacitors

Summary
References
Review Questions
Problems
Table of Contents

PART II Power Transistors and DCDC Converters

Chapter 4 Power Transistors

4.1 Introduction

4.2 Silicon Carbide Transistors

4.3 Power MOSFETs
 4.3.1 Steady-State Characteristics
 4.3.2 Switching Characteristics
 4.3.3 Silicon Carbide MOSFETs

4.4 COOLMOS

4.5 Junction Field-Effect Transistors (JFETs)
 4.5.1 Operation and Characteristics of JFETs
 4.5.2 Silicon Carbide JFET Structures

4.6 Bipolar Junction Transistors
 4.6.1 Steady-State Characteristics
 4.6.2 Switching Characteristics
 4.6.3 Switching Limits
 4.6.4 Silicon Carbide BJTs

4.7 IGBTs
 4.7.1 Silicon Carbide IGBTs

4.8 SITs

4.9 Comparisons of Transistors

4.10 Power Derating of Power Transistors

4.11 di/dt and dv/dt Limitations

4.12 Series and Parallel Operation

4.13 SPICE Models
 4.13.1 BJT SPICE Model
 4.13.2 MOSFET SPICE Model
 4.13.3 IGBT SPICE Model
Table of Contents

4.14 MOSFET Gate Drive
4.15 JFET Gate Drives
4.16 BJT Base Drive
4.17 Isolation of Gate and Base Drives
 4.17.1 Pulse Transformers
 4.17.2 Optocouplers
4.18 GATE-DRIVE ICs
Summary
References
Review Questions
Problems

Chapter 5 DCDC Converters
5.1 Introduction
5.2 Performance Parameters of DCDC Converters
5.3 Principle of Step-Down Operation
 5.3.1 Generation of Duty Cycle
5.4 Step-Down Converter with RL Load
5.5 Principle of Step-Up Operation
5.6 Step-Up Converter with a Resistive Load
5.7 Frequency Limiting Parameters
5.8 Converter Classification
5.9 Switching-Mode Regulators
 5.9.1 Buck Regulators
 5.9.2 Boost Regulators
 5.9.3 BuckBoost Regulators
 5.9.4 Cuk Regulators
 5.9.5 Limitations of Single-Stage Conversion
Table of Contents

5.10 Comparison of Regulators
5.11 Multioutput Boost Converter
5.12 Diode Rectifier-Fed Boost Converter
5.13 Averaging Models of Converters
5.14 StateSpace Analysis of Regulators
5.15 Design Considerations for Input Filter and Converters
5.16 Drive IC for Converters

Summary
References
Review Questions
Problems

PART III Inverters

Chapter 6 DCAC Converters

6.1 Introduction
6.2 Performance Parameters
6.3 Principle of Operation
6.4 Single-Phase Bridge Inverters
6.5 Three-Phase Inverters

6.5.1 180-Degree Conduction
6.5.2 120-Degree Conduction

6.6 Voltage Control of Single-Phase Inverters

6.6.1 Multiple-Pulse-Width Modulation
6.6.2 Sinusoidal Pulse-Width Modulation
6.6.3 Modified Sinusoidal Pulse-Width Modulation
6.6.4 Phase-Displacement Control

6.7 Voltage Control of Three-Phase Inverters

6.7.1 Sinusoidal PWM
Table of Contents

6.7.2 60-Degree PWM
6.7.3 Third-Harmonic PWM
6.7.4 Space Vector Modulation
6.7.5 Comparison of PWM Techniques

6.8 Harmonic Reductions
6.9 Current-Source Inverters
6.10 Variable DC-Link Inverter
6.11 Boost Inverter
6.12 Inverter Circuit Design

Summary
References
Review Questions
Problems

Chapter 7 Resonant Pulse Inverters

7.1 Introduction

7.2 Series Resonant Inverters
 7.2.1 Series Resonant Inverters with Unidirectional Switches
 7.2.2 Series Resonant Inverters with Bidirectional Switches

7.3 Frequency Response of Series Resonant Inverters
 7.3.1 Frequency Response for Series Loaded
 7.3.2 Frequency Response for Parallel Loaded
 7.3.3 Frequency Response for SeriesParallel Loaded

7.4 Parallel Resonant Inverters

7.5 Voltage Control of Resonant Inverters

7.6 Class E Resonant Inverter

7.7 Class E Resonant Rectifier

7.8 Zero-Current-Switching Resonant Converters
Table of Contents

7.8.1 L-Type ZCS Resonant Converter
7.8.2 M-Type ZCS Resonant Converter
7.9 Zero-Voltage-Switching Resonant Converters
7.10 Comparisons Between ZCS and ZVS Resonant Converters
7.11 Two-Quadrant ZVS Resonant Converters
7.12 Resonant DC-Link Inverters

Summary
References
Review Questions
Problems

Chapter 8 Multilevel Inverters

8.1 Introduction
8.2 Multilevel Concept
8.3 Types of Multilevel Inverters
8.4 Diode-Clamped Multilevel Inverter
 8.4.1 Principle of Operation
 8.4.2 Features of Diode-Clamped Inverter
 8.4.3 Improved Diode-Clamped Inverter
8.5 Flying-Capacitors Multilevel Inverter
 8.5.1 Principle of Operation
 8.5.2 Features of Flying-Capacitors Inverter
8.6 Cascaded Multilevel Inverter
 8.6.1 Principle of Operation
 8.6.2 Features of Cascaded Inverter
8.7 Applications
 8.7.1 Reactive Power Compensation
 8.7.2 Back-to-Back Intertie
 8.7.3 Adjustable Speed Drives
Table of Contents

8.8 Switching Device Currents
8.9 DC-Link Capacitor Voltage Balancing
8.10 Features of Multilevel Inverters
8.11 Comparisons of Multilevel Converters

Summary
References
Review Questions
Problems

PART IV Thyristors and Thyristorized Converters

Chapter 9 Thyristors

9.1 Introduction
9.2 Thyristor Characteristics
9.3 Two-Transistor Model of Thyristor
9.4 Thyristor Turn-On
9.5 Thyristor Turn-Off
9.6 Thyristor Types
 9.6.1 Phase-Controlled Thyristors
 9.6.2 Bidirectional Phase-Controlled Thyristors
 9.6.3 Fast-Switching Asymmetrical Thyristors
 9.6.4 Light-Activated Silicon-Controlled Rectifiers
 9.6.5 Bidirectional Triode Thyristors
 9.6.6 Reverse-Conducting Thyristors
 9.6.7 Gate Turn-off Thyristors
 9.6.8 FET-Controlled Thyristors
 9.6.9 MTOs
 9.6.10 ETOs
 9.6.11 IGCTs
Table of Contents

9.6.12 MCTs
9.6.13 SITHs
9.6.14 Comparisons of Thyristors

9.7 Series Operation of Thyristors
9.8 Parallel Operation of Thyristors
9.9 \(\frac{d}{dt} \) Protection
9.10 \(\frac{d}{dt} \) Protection
9.11 SPICE Thyristor Model
9.11.1 Thyristor SPICE Model
9.11.2 GTO SPICE Model
9.11.3 MCT SPICE Model
9.11.4 SITH SPICE Model
9.12 DIACs
9.13 Thyristor Firing Circuits
9.14 Unijunction Transistor
9.15 Programmable Unijunction Transistor

Summary
References
Review Questions
Problems

Chapter 10 Controlled Rectifiers

10.1 Introduction
10.2 Single-Phase Full Converters
 10.2.1 Single-Phase Full Converter with RL Load
10.3 Single-Phase Dual Converters
10.4 Three-Phase Full Converters
 10.4.1 Three-Phase Full Converter with RL Load
Table of Contents

10.5 Three-Phase Dual Converters
10.6 Pulse-Width-Modulation Control
 10.6.1 PWM Control
 10.6.2 Single-Phase Sinusoidal PWM
 10.6.3 Three-Phase PWM Rectifier
10.7 Single-Phase Series Converters
10.8 Twelve-Pulse Converters
10.9 Design of Converter Circuits
10.10 Effects of Load and Source Inductances

Summary
References
Review Questions
Problems

Chapter 11 AC Voltage Controllers

11.1 Introduction
11.2 Performance Parameters of AC Voltage Controllers
11.3 Single-Phase Full-Wave Controllers with Resistive Loads
11.4 Single-Phase Full-Wave Controllers with Inductive Loads
11.5 Three-Phase Full-Wave Controllers
11.6 Three-Phase Full-Wave Delta-Connected Controllers
11.7 Single-Phase Transformer Connection Changers
11.8 Cycloconverters
 11.8.1 Single-Phase Cycloconverters
 11.8.2 Three-Phase Cycloconverters
 11.8.3 Reduction of Output Harmonics
11.9 AC Voltage Controllers with PWM Control

Part V Electronics Applications and Protections
Table of Contents

13.2.1 Switched-Mode Dc Power Supplies
13.2.2 Flyback Converter
13.2.3 Forward Converter
13.2.4 PushPull Converter
13.2.5 Half-Bridge Converter
13.2.6 Full-Bridge Converter
13.2.7 Resonant Dc Power Supplies
13.2.8 Bidirectional Power Supplies

13.3 Ac Power Supplies
13.3.1 Switched-Mode Ac Power Supplies
13.3.2 Resonant Ac Power Supplies
13.3.3 Bidirectional Ac Power Supplies

13.4 Multistage Conversions

13.5 Control Circuits

13.6 Magnetic Design Considerations
13.6.1 Transformer Design
13.6.2 Dc Inductor
13.6.3 Magnetic Saturation

Summary
References
Review Questions
Problems

Chapter 14 Dc Drives
14.1 Introduction

14.2 Basic Characteristics of Dc Motors
14.2.1 Separately Excited Dc Motor
14.2.2 Series-Excited Dc Motor
14.2.3 Gear Ratio
Table of Contents

14.3 Operating Modes
14.4 Single-Phase Drives
 14.4.1 Single-Phase Semiconverter Drives
 14.4.2 Single-Phase Full-Converter Drives
 14.4.3 Single-Phase Dual-Converter Drives
14.5 Three-Phase Drives
 14.5.1 Three-Phase Semiconverter Drives
 14.5.2 Three-Phase Full-Converter Drives
 14.5.3 Three-Phase Dual-Converter Drives
14.6 DcDc Converter Drives
 14.6.1 Principle of Power Control
 14.6.2 Principle of Regenerative Brake Control
 14.6.3 Principle of Rheostatic Brake Control
 14.6.4 Principle of Combined Regenerative and Rheostatic Brake Control
 14.6.5 Two- and Four-Quadrant DcDc Converter Drives
 14.6.6 Multiphase DcDc Converters
14.7 Closed-Loop Control of Dc Drives
 14.7.1 Open-Loop Transfer Function
 14.7.2 Open-Loop Transfer Function of Separately Excited Motors
 14.7.3 Open-Loop Transfer Function of Series Excited Motors
 14.7.4 Converter Control Models
 14.7.5 Closed-Loop Transfer Function
 14.7.6 Closed-Loop Current Control
 14.7.7 Design of Current Controller
 14.7.8 Design of Speed Controller
 14.7.9 DcDc Converter-Fed Drive
 14.7.10 Phase-Locked-Loop Control
 14.7.11 Microcomputer Control of Dc Drives

Summary
Chapter 15 Ac Drives

15.1 Introduction

15.2 Induction Motor Drives
 15.2.1 Performance Characteristics
 15.2.2 Torque-Speed Characteristics
 15.2.3 Stator Voltage Control
 15.2.4 Rotor Voltage Control
 15.2.5 Frequency Control
 15.2.6 Voltage and Frequency Control
 15.2.7 Current Control
 15.2.8 Constant Slip-Speed Control
 15.2.9 Voltage, Current, and Frequency Control

15.3 Closed-Loop Control of Induction Motors

15.4 Dimensioning the Control Variables

15.5 Vector Controls
 15.5.1 Basic Principle of Vector Control
 15.5.2 Direct and Quadrature-Axis Transformation
 15.5.3 Indirect Vector Control
 15.5.4 Direct Vector Control

15.6 Synchronous Motor Drives
 15.6.1 Cylindrical Rotor Motors
 15.6.2 Salient-Pole Motors
 15.6.3 Reluctance Motors
 15.6.4 Switched Reluctance Motors
 15.6.5 Permanent-Magnet Motors
Table of Contents

15.6.6 Closed-Loop Control of Synchronous Motors
15.6.7 Brushless Dc and Ac Motor Drives
15.7 Design of Speed Controller for Pmsm Drives
 15.7.1 System Block Diagram
 15.7.2 Current Loop
 15.7.3 Speed Controller
15.8 Stepper Motor Control
 15.8.1 Variable-Reluctance Stepper Motors
 15.8.2 Permanent-Magnet Stepper Motors
15.9 Linear Induction Motors
15.10 High-Voltage IC for Motor Drives

Summary
References
Review Questions
Problems

Chapter 16 Introduction to Renewable Energy
16.1 Introduction
16.2 Energy and Power
16.3 Renewable Energy Generation System
 16.3.1 Turbine
 16.3.2 Thermal Cycle
16.4 Solar Energy Systems
 16.4.1 Solar Energy
 16.4.2 Photovoltaic
 16.4.3 Photovoltaic Cells
 16.4.4 PV Models
 16.4.5 Photovoltaic Systems
16.5 Wind Energy
Table of Contents

16.5.1 Wind Turbines
16.5.2 Turbine Power
16.5.3 Speed and Pitch Control
16.5.4 Power Curve
16.5.5 Wind Energy Systems
16.5.6 Doubly Fed Induction Generators
16.5.7 Squirrel-Cage Induction Generators
16.5.8 Synchronous Generators
16.5.9 Permanent-Magnet Synchronous Generators
16.5.10 Switched Reluctance Generator
16.5.11 Comparisons of the Wind Turbine Power Configurations

16.6 Ocean Energy
16.6.1 Wave Energy
16.6.2 Mechanism of Wave Generation
16.6.3 Wave Power
16.6.4 Tidal Energy
16.6.5 Ocean Thermal Energy Conversion

16.7 Hydropower Energy
16.7.1 Large-Scale Hydropower
16.7.2 Small-Scale Hydropower

16.8 Fuel Cells
16.8.1 Hydrogen Generation and Fuel Cells
16.8.2 Types of Fuel Cells
16.8.3 Polymer Electrolyte Membrane Fuel Cells (PEMFC)
16.8.4 Direct-Methanol Fuel Cells (DMFC)
16.8.5 Alkaline Fuel Cells (AFC)
16.8.6 Phosphoric Acid Fuel Cells (PAFC)
16.8.7 Molten Carbonate Fuel Cells (MCFC)
16.8.8 Solid Oxide Fuel Cells (SOFC)
Table of Contents

16.8.9 Thermal and Electrical Processes of Fuel Cells
16.9 Geothermal Energy
16.10 Biomass Energy
Summary
References
Review Questions
Problems

Chapter 17 Protections of Devices and Circuits

17.1 Introduction
17.2 Cooling and Heat Sinks
17.3 Thermal Modeling of Power Switching Devices
 17.3.1 Electrical Equivalent Thermal Model
 17.3.2 Mathematical Thermal Equivalent Circuit
 17.3.3 Coupling of Electrical and Thermal Components
17.4 Snubber Circuits
17.5 Reverse Recovery Transients
17.6 Supply- and Load-Side Transients
17.7 Voltage Protection by Selenium Diodes and Metaloxide Varistors
17.8 Current Protections
 17.8.1 Fusing
 17.8.2 Fault Current with Ac Source
 17.8.3 Fault Current with Dc Source
17.9 Electromagnetic Interference
 17.9.1 Sources of EMI
 17.9.2 Minimizing EMI Generation
 17.9.3 EMI Shielding
 17.9.4 EMI Standards
Table of Contents

Summary
References
Review Questions
Problems
Appendix A Three-Phase Circuits
Appendix B Magnetic Circuits
Appendix C Switching Functions of Converters
Appendix D DC Transient Analysis
Appendix E Fourier Analysis
Appendix F Reference Frame Transformation
Bibliography
Answers to Selected Problems
Index
 A
 B
 C
 D
 F
 G
 H
 I
 J
 L
 M
 O
Table of Contents