

ADAPTIVE FILTER THEORY

Fifth Edition

Simon Haykin

Communications Research Laboratory McMaster University Hamilton, Ontario, Canada

International Edition contributions by

Telagarapu Prabhakar

Department of Electronics and Communication Engineering GMR Institute of Technology Rajam, Andhra Pradesh, India

PEARSON

Upper Saddle River Boston Columbus San Francisco New York Indianapolis London Toronto Sydney Singapore Tokyo Montreal Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

Adaptive Filter Theory

Table of Contents

(`	\sim	V	۵	r
ı	•	. ,	v	_	

Title

Contents

Preface

Acknowledgments

Background and Preview

- 1. The Filtering Problem
- 2. Linear Optimum Filters
- 3. Adaptive Filters
- 4. Linear Filter Structures
- 5. Approaches to the Development of Linear Adaptive Filters
- 6. Adaptive Beamforming
- 7. Four Classes of Applications
- 8. Historical Notes

Chapter 1 Stochastic Processes and Models

- 1.1 Partial Characterization of a Discrete-Time Stochastic Process
- 1.2 Mean Ergodic Theorem
- 1.3 Correlation Matrix
- 1.4 Correlation Matrix of Sine Wave Plus Noise
- 1.5 Stochastic Models
- 1.6 Wold Decomposition
- 1.7 Asymptotic Stationarity of an Autoregressive Process

- 1.8 YuleWalker Equations
- 1.9 Computer Experiment: Autoregressive Process of Order Two
- 1.10 Selecting the Model Order
- 1.11 Complex Gaussian Proceses
- 1.12 Power Spectral Density
- 1.13 Propert ies of Power Spectral Density
- 1.14 Transmission of a Stationary Process Through a Linear Filter
- 1.15 Cramér Spectral Representation for a Stationary Process
- 1.16 Power Spectrum Estimation
- 1.17 Other Statistical Characteristics of a Stochastic Process
- 1.18 Polyspectra
- 1.19 Spectral-Correlation Density
- 1.20 Summary and Discussion

Problems

Chapter 2 Wiener Filters

- 2.1 Linear Optimum Filtering: Statement of the Problem
- 2.2 Principle of Orthogonality
- 2.3 Minimum Mean-Square Error
- 2.4 WienerHopf Equations
- 2.5 Error-Performance Surface
- 2.6 Multiple Linear Regression Model
- 2.7 Example
- 2.8 Linearly Constrained Minimum-Variance Filter
- 2.9 Generalized Sidelobe Cancellers
- 2.10 Summary and Discussion

Problems

Chapter 3 Linear Prediction

- 3.1 Forward Linear Prediction
- 3.2 Backward Linear Prediction
- 3.3 LevinsonDurbin Algorithm
- 3.4 Properties of Prediction-Error Filters
- 3.5 SchurCohn Test
- 3.6 Autoregressive Modeling of a Stationary Stochastic Process
- 3.7 Cholesky Factorization
- 3.8 Lattice Predictors
- 3.9 All-Pole, All-Pass Lattice Filter
- 3.10 Joint-Process Estimation
- 3.11 Predictive Modeling of Speech
- 3.12 Summary and Discussion

Problems

Chapter 4 Method of Steepest Descent

- 4.1 Basic Idea of the Steepest-Descent Algorithm
- 4.2 The Steepest-Descent Algorithm Applied to the Wiener Filter
- 4.3 Stability of the Steepest-Descent Algorithm
- 4.4 Example
- 4.5 The Steepest-Descent Algorithm Viewed as a Deterministic Search Method
- 4.6 Virtue and Limitation of the Steepest-Descent Algorithm
- 4.7 Summary and Discussion

Problems

Chapter 5 Method of Stochastic Gradient Descent

5.1 Principles of Stochastic Gradient Descent

- 5.2 Application 1: Least-Mean-Square (LMS) Algorithm
- 5.3 Application 2: Gradient-Adaptive Lattice Filtering Algorithm
- 5.4 Other Applications of Stochastic Gradient Descent
- 5.5 Summary and Discussion

Problems

Chapter 6 The Least-Mean-Square (LMS) Algorithm

- 6.1 Signal-Flow Graph
- 6.2 Optimality Considerations
- 6.3 Applications
- 6.4 Statistical Learning Theory
- 6.5 Transient Behavior and Convergence Considerations
- 6.6 Efficiency
- 6.7 Computer Experiment on Adaptive Prediction
- 6.8 Computer Experiment on Adaptive Equalization
- 6.9 Computer Experiment on a Minimum-Variance Distortionless-Response Beamformer
- 6.10 Summary and Discussion

Problems

Chapter 7 Normalized Least-Mean-Square (LMS) Algorithm and Its Generalization

- 7.1 Normalized LMS Algorithm: The Solution to a Constrained Optimization Problem
- 7.2 Stability of the Normalized LMS Algorithm
- 7.3 Step-Size Control for Acoustic Echo Cancellation
- 7.4 Geometric Considerations Pertaining to the Convergence Process for Real-Valued Data
- 7.5 Affine Projection Adaptive Filters

7.6 Summary and Discussion

Problems

Chapter 8 Block-Adaptive Filters

- 8.1 Block-Adaptive Filters: Basic Ideas
- 8.2 Fast Block LMS Algorithm
- 8.3 Unconstrained Frequency-Domain Adaptive Filters
- 8.4 Self-Orthogonalizing Adaptive Filters
- 8.5 Computer Experiment on Adaptive Equalization
- 8.6 Subband Adaptive Filters
- 8.7 Summary and Discussion

Problems

Chapter 9 Method of Least-Squares

- 9.1 Statement of the Linear Least-Squares Estimation Problem
- 9.2 Data Windowing
- 9.3 Principle of Orthogonality Revisited
- 9.4 Minimum Sum of Error Squares
- 9.5 Normal Equations and Linear Least-Squares Filters
- 9.6 Time-Average Correlation Matrix
- 9.7 Reformulation of the Normal Equations in Terms of Data Matrices
- 9.8 Properties of Least-Squares Estimates
- 9.9 Minimum-Variance Distortionless Response (MVDR) Spectrum Estimation
- 9.10 Regularized MVDR Beamforming
- 9.11 Singular-Value Decomposition
- 9.12 Pseudoinverse
- 9.13 Interpretation of Singular Values and Singular Vectors

- 9.14 Minimum-Norm Solution to the Linear Least-Squares Problem
- 9.15 Normalized LMS Algorithm Viewed as the Minimum-Norm Solution to an Underdetermined Least-Squares Estimation Problem
- 9.16 Summary and Discussion

Problems

Chapter 10 The Recursive Least-Squares (RLS) Algorithm

- 10.1 Some Preliminaries
- 10.2 The Matrix Inversion Lemma
- 10.3 The Exponentially Weighted RLS Algorithm
- 10.4 Selection of the Regularization Parameter
- 10.5 Updated Recursion for the Sum of Weighted Error Squares
- 10.6 Example: Single-Weight Adaptive Noise Canceller
- 10.7 Statistical Learning Theory
- 10.8 Efficiency
- 10.9 Computer Experiment on Adaptive Equalization
- 10.10 Summary and Discussion

Problems

Chapter 11 Robustness

- 11.1 Robustness, Adaptation, and Disturbances
- 11.2 Robustness: Preliminary Considerations Rooted in H Optimization
- 11.3 Robustness of the LMS Algorithm
- 11.4 Robustness of the RLS Algorithm
- 11.5 Comparative Evaluations of the LMS and RLS Algorithms from the Perspective of Robustness
- 11.6 Risk-Sensitive Optimality
- 11.7 Trade-Offs Between Robustness and Efficiency
- 11.8 Summary and Discussion

Ρ	ro	bl	e	m	s
		\sim			v

Chapter 12 Finite-Precision Effects

- 12.1 Quantization Errors
- 12.2 Least-Mean-Square (LMS) Algorithm
- 12.3 Recursive Least-Squares (RLS) Algorithm
- 12.4 Summary and Discussion

Problems

Chapter 13 Adaptation in Nonstationary Environments

- 13.1 Causes and Consequences of Nonstationarity
- 13.2 The System Identification Problem
- 13.3 Degree of Nonstationarity
- 13.4 Criteria for Tracking Assessment
- 13.5 Tracking Performance of the LMS Algorithm
- 13.6 Tracking Performance of the RLS Algorithm
- 13.7 Comparison of the Tracking Performance of LMS and RLS Algorithms
- 13.8 Tuning of Adaptation Parameters
- 13.9 Incremental Delta-Bar-Delta (IDBD) Algorithm
- 13.10 Autostep Method
- 13.11 Computer Experiment: Mixture of Stationary and Nonstationary Environmental Data
- 13.12 Summary and Discussion

Problems

Chapter 14 Kalman Filters

- 14.1 Recursive Minimum Mean-Square Estimation for Scalar Random Variables
- 14.2 Statement of the Kalman Filtering Problem

- 14.3 The Innovations Process
- 14.4 Estimation of the State Using the Innovations Process
- 14.5 Filtering
- 14.6 Initial Conditions
- 14.7 Summary of the Kalman Filter
- 14.8 Optimality Criteria for Kalman Filtering
- 14.9 Kalman Filter as the Unifying Basis for RLS Algorithms
- 14.10 Covariance Filtering Algorithm
- 14.11 Information Filtering Algorithm
- 14.12 Summary and Discussion

Problems

Chapter 15 Square-Root Adaptive Filtering Algorithms

- 15.1 Square-Root Kalman Filters
- 15.2 Building Square-Root Adaptive Filters on the Two Kalman Filter Variants
- 15.3 QRD-RLS Algorithm
- 15.4 Adaptive Beamforming
- 15.5 Inverse QRD-RLS Algorithm
- 15.6 Finite-Precision Effects
- 15.7 Summary and Discussion

Problems

Chapter 16 Order-Recursive Adaptive Filtering Algorithm

- 16.1 Order-Recursive Adaptive Filters Using Least-Squares Estimation: An Overview
- 16.2 Adaptive Forward Linear Prediction
- 16.3 Adaptive Backward Linear Prediction
- 16.4 Conversion Factor

- 16.5 Least-Squares Lattice (LSL) Predictor
- 16.6 Angle-Normalized Estimation Errors
- 16.7 First-Order State-Space Models for Lattice Filtering
- 16.8 QR-Decomposition-Based Least-Squares Lattice (QRD-LSL) Filters
- 16.9 Fundamental Properties of the QRD-LSL Filter
- 16.10 Computer Experiment on Adaptive Equalization
- 16.11 Recursive (LSL) Filters Using A Posteriori Estimation Errors
- 16.12 Recursive LSL Filters Using A Priori Estimation Errors with Error Feedback
- 16.13 Relation Between Recursive LSL and RLS Algorithms
- 16.14 Finite-Precision Effects
- 16.15 Summary and Discussion

Problems

Chapter 17 Blind Deconvolution

- 17.1 Overview of Blind Deconvolution
- 17.2 Channel Identifiability Using Cyclostationary Statistics
- 17.3 Subspace Decomposition for Fractionally Spaced Blind Identification
- 17.4 Bussgang Algorithm for Blind Equalization
- 17.5 Extension of the Bussgang Algorithm to Complex Baseband Channels
- 17.6 Special Cases of the Bussgang Algorithm
- 17.7 Fractionally Spaced Bussgang Equalizers
- 17.8 Estimation of Unknown Probability Distribution Function of Signal Source
- 17.9 Summary and Discussion

Problems

Epilogue

- 1. Robustness, Efficiency, and Complexity
- 2. Kernel-Based Nonlinear Adaptive Filtering

Appendix A Theory of Complex Variables

- A.1 CauchyRiemann Equations
- A.2 Cauchys Integral Formula
- A.3 Laurents Series
- A.4 Singularities and Residues
- A.5 Cauchys Residue Theorem
- A.6 Principle of the Argument
- A.7 Inversion Integral for the z-Transform
- A.8 Parsevals Theorem

Appendix B Wirtinger Calculus for Computing Complex Gradients

- **B.1 Wirtinger Calculus: Scalar Gradients**
- B.2 Generalized Wirtinger Calculus: Gradient Vectors
- **B.3 Another Approach to Compute Gradient Vectors**
- B.4 Expressions for the Partial Derivatives

Appendix C Method of Lagrange Multipliers

- C.1 Optimization Involving a Single Equality Constraint
- C.2 Optimization Involving Multiple Equality Constraints
- C.3 Optimum Beamformer

Appendix D Estimation Theory

- D.1 Likelihood Function
- D.2 CramérRao Inequality
- D.3 Properties of Maximum-Likelihood Estimators

\Box	10	`andit	ional	Mean	Ectim	ator
IJ.	4 L	JOHAII	юнаг	iviean		aioi

Appendix E Eigenanalysis

- E.1 The Eigenvalue Problem
- E.2 Properties of Eigenvalues and Eigenvectors
- E.3 Low-Rank Modeling
- E.4 Eigenfilters
- E.5 Eigenvalue Computations

Appendix F Langevin Equation of Nonequilibrium

- Thermodynamics
- F.1 Brownian Motion
- F.2 Langevin Equation

Appendix G Rotations and Reflections

- G.1 Plane Rotations
- G.2 Two-Sided Jacobi Algorithm
- G.3 Cyclic Jacobi Algorithm
- G.4 Householder Transformation
- G.5 The QR Algorithm

Appendix H Complex Wishart Distribution

- H.1 Definition
- H.2 The Chi-Square Distribution as a Special Case
- H.3 Properties of the Complex Wishart Distribution
- H.4 Expectation of the Inverse Correlation Matrix -1(n)

Glossary

Text Conventions

Abbreviations

Principal Symbols

Bibliography Suggested Reading Index

