

Electrical Engineering

CONCEPTS AND APPLICATIONS

S. A. Reza Zekavat

Electrical Engineering

Concepts and Applications

Electrical Engineering: Concepts and Applications

Table of Contents

\sim	_	٠,	_	_
ι,	റ	\/	Р	r

Contents

Preface

Acknowledgements

Chapter 1 Why Electrical Engineering?

- 1.1 Introduction
- 1.2 Electrical Engineering and a Successful Career
- 1.3 What Do You Need to Know about EE?
- 1.4 Real Career Success Stories
- 1.5 Typical Situations Encountered on the Job
 - 1.5.1 On-the-Job Situation 1: Active Structural Control
 - 1.5.2 On-the-Job Situation 2: Chemical Process Control
 - 1.5.3 On-the-Job Situation 3: Performance of an Off-Road Vehicle Prototype

Further Reading

Chapter 2 Fundamentals of Electric Circuits

- 2.1 Introduction
- 2.2 Charge and Current
- 2.3 Voltage
- 2.4 Respective Direction of Voltage and Current
- 2.5 Kirchhoffs Current Law
- 2.6 Kirchhoffs Voltage Law
- 2.7 Ohms Law and Resistors
 - 2.7.1 Resistivity of a Resistor
 - 2.7.2 Nonlinear Resistors
 - 2.7.3 Time-Varying Resistors

- 2.8 Power and Energy
- 2.8.1 Resistor-Consumed Power
- 2.9 Independent and Dependent Sources
- 2.10 Analysis of Circuits Using PSpice

Bias Point Analysis

Time Domain (Transient) Analysis

Copy the Simulation Plot to the Clipboard to Submit Electronically

2.11 What Did You Learn?

Problems

Chapter 3 Resistive Circuits

- 3.1 Introduction
- 3.2 Resistors in Parallel and Series and Equivalent Resistance
- 3.3 Voltage and Current Division/Divider Rules
 - 3.3.1 Voltage Division
 - 3.3.2 Current Division
- 3.4 Nodal and Mesh Analysis
 - 3.4.1 Nodal Analysis
 - 3.4.2 Mesh Analysis
- 3.5 Special Conditions: Super Node
- 3.6 Thévenin/Norton Equivalent Circuits
 - 3.6.1 Source Transformation
- 3.7 Superposition Principle
- 3.8 Maximum Power Transfer
- 3.9 Analysis of Circuits Using PSpice
- 3.10 What Did You Learn?

Problems

Chapter 4 Capacitance and Inductance

- 4.1 Introduction
- 4.2 Capacitors
 - 4.2.1 The Relationship Between Charge, Voltage, and Current
 - 4.2.2 Power

- 4.2.3 Energy
- 4.3 Capacitors in Series and Parallel
 - 4.3.1 Series Capacitors
 - 4.3.2 Parallel Capacitance
- 4.4 Inductors
 - 4.4.1 The Relationship Between Voltage and Current
 - 4.4.2 Power and Stored Energy
- 4.5 Inductors in Series and Parallel
 - 4.5.1 Inductors in Series
 - 4.5.2 Inductors in Parallel
- 4.6 Applications of Capacitors and Inductors
 - 4.6.1 Fuel Sensors
 - 4.6.2 Vibration Sensors
- 4.7 Analysis of Capacitive and Inductive Circuits Using PSpice
- 4.8 What Did You Learn?

Problems

Chapter 5 Transient Analysis

- 5.1 Introduction
- 5.2 First-Order Circuits
 - 5.2.1 RC Circuits
 - 5.2.2 RL Circuits
- 5.3 DC Steady State
- 5.4 DC Steady State for CapacitiveInductive Circuits
- 5.5 Second-Order Circuits
 - 5.5.1 Series RLC Circuits with a DC Voltage Source
 - 5.5.2 Parallel RLC Circuits with a DC Voltage Source
- 5.6 Transient Analysis with Sinusoid Forcing Functions
- 5.7 Using PSpice to Investigate the Transient Behavior of RL and RC Circuits
- 5.8 What Did You Learn?

Problems

Chapter 6 Steady-State AC Analysis

- 6.1 Introduction: Sinusoidal Voltages and Currents
 - 6.1.1 Root-Mean-Square (rms) Values (Effective Values)
 - 6.1.2 Instantaneous and Average Power
- 6.2 Phasors
 - 6.2.1 Phasors in Additive or (Subtractive) Sinusoids
- 6.3 Complex Impedances
 - 6.3.1 The Impedance of a Resistor
 - 6.3.2 The Impedance of an Inductor
 - 6.3.3 The Impedance of a Capacitor
 - 6.3.4 Series Connection of Impedances
 - 6.3.5 Parallel Connection of Impedances
- 6.4 Steady-State Circuit Analysis Using Phasors
- 6.5 Thévenin and Norton Equivalent Circuits with Phasors
 - 6.5.1 Thévenin Equivalent Circuits with Phasors
 - 6.5.2 Norton Equivalent Circuits with Phasors
- 6.6 AC Steady-State Power
 - 6.6.1 Average Power
 - 6.6.2 Power Factor
 - 6.6.3 Reactive Power
 - 6.6.4 Complex Power
 - 6.6.5 Apparent Power
 - 6.6.6 Maximum Average Power Transfer
 - 6.6.7 Power Factor Correction
- 6.7 Steady-State Circuit Analysis Using PSpice
- 6.8 What Did You Learn?

Problems

Chapter 7 Frequency Analysis

- 7.1 Introduction
- 7.2 First-Order Filters
 - 7.2.1 Transfer Functions
- 7.3 Low-Pass Filters
 - 7.3.1 Magnitude and Phase Plots

- 7.3.2 Decibels
- 7.3.3 Bode Plot
- 7.4 High-Pass Filters
 - 7.4.1 Cascaded Networks
- 7.5 Second-Order Filters
 - 7.5.1 Band-Pass Filters
 - 7.5.2 Band-Stop Filters
- 7.6 MATLAB Applications
- 7.7 Frequency Response Analysis Using PSpice
- 7.8 What Did You Learn?

Problems

Chapter 8 Electronic Circuits

- 8.1 Introduction
- 8.2 P-Type and N-Type Semiconductors
- 8.3 Diodes
 - 8.3.1 Diode Applications
 - 8.3.2 Different Types of Diodes
 - 8.3.3 AC-to-DC Converter
- 8.4 Transistors
 - 8.4.1 Bipolar Junction Transistor
 - 8.4.2 Transistor as an Amplifier
 - 8.4.3 Transistors as Switches
 - 8.4.4 Field-Effect Transistors
 - 8.4.5 Design of NOT Gates Using NMOS Only for High-Density Integration
 - 8.4.6 Design of a Logic Gate Using CMOS
- 8.5 Operational Amplifiers
- 8.6 Using PSpice to Study Diodes and Transistors
- 8.7 What Did You Learn?

Further Reading

Problems

Chapter 9 Power Systems and Transmission Lines

- 9.1 Introduction
- 9.2 Three-Phase Systems
 - 9.2.1 Introduction
 - 9.2.2 Phase Sequence
 - 9.2.3 Y-Connected Generators
 - 9.2.4 Y-Connected Loads
 - 9.2.5 -Connected Loads
 - 9.2.6 -Star and Star- Transformations
 - 9.2.7 Power in Three-Phase Systems
 - 9.2.8 Comparison of Star and Load Connections
 - 9.2.9 Advantages of Three-Phase Systems
- 9.3 Transmission Lines
 - 9.3.1 Introduction
 - 9.3.2 Resistance (R)
 - 9.3.3 Different Types of Conductors
 - 9.3.4 Inductance (L)
 - 9.3.5 Capacitance
 - 9.3.6 Transmission Line Equivalent Circuits
- 9.4 Using PSpice to Study Three-Phase Systems
- 9.5 What Did You Learn?

Further Reading

Problems

Chapter 10 Fundamentals of Logic Circuits

- 10.1 Introduction
- 10.2 Number Systems
 - 10.2.1 Binary Numbers
 - 10.2.2 Hexadecimal Numbers
 - 10.2.3 Octal Numbers
- 10.3 Boolean Algebra
 - 10.3.1 Boolean Inversion
 - 10.3.2 Boolean AND Operation
 - 10.3.3 Boolean OR Operation

- 10.3.4 Boolean NAND Operation
- 10.3.5 Boolean NOR Operation
- 10.3.6 Boolean XOR Operation
- 10.3.7 Summary of Boolean Operations
- 10.3.8 Rules Used in Boolean Algebra
- 10.3.9 De Morgans Theorems
- 10.3.10 Commutativity Rule
- 10.3.11 Associativity Rule
- 10.3.12 Distributivity Rule

10.4 Basic Logic Gates

- 10.4.1 The NOT Gate
- 10.4.2 The AND Gate
- 10.4.3 The OR Gate
- 10.4.4 The NAND Gate
- 10.4.5 The NOR Gate
- 10.4.6 The XOR Gate
- 10.4.7 The XNOR Gate

10.5 Sequential Logic Circuits

- 10.5.1 Flip-Flops
- 10.5.2 Counter
- 10.6 Using PSpice to Analyze Digital Logic Circuits
- 10.7 What Did You Learn?

Reference

Problems

Chapter 11 Computer-Based Instrumentation Systems

- 11.1 Introduction
- 11.2 Sensors
 - 11.2.1 Pressure Sensors
 - 11.2.2 Temperature Sensors
 - 11.2.3 Accelerometers
 - 11.2.4 Strain-Gauges/Load Cells
 - 11.2.5 Acoustic Sensors

11.2.6 Linear Variable Differential Transformers (LVDT)

11.3 Signal Conditioning

- 11.3.1 Amplifiers
- 11.3.2 Active Filters

11.4 Data Acquisition

- 11.4.1 Analog Multiplexer
- 11.4.2 Analog-to-Digital Conversion

11.5 Grounding Issues

- 11.5.1 Ground Loops
- 11.6 Using PSpice to Demonstrate a Computer-Based Instrument
- 11.7 What Did You Learn?

Further Reading

Problems

Chapter 12 Principles of Electromechanics

- 12.1 Introduction
- 12.2 Magnetic Fields
 - 12.2.1 Magnetic Flux and Flux Intensity
 - 12.2.2 Magnetic Field Intensity
 - 12.2.3 The Right-Hand Rule
 - 12.2.4 Forces on Charges by Magnetic Fields
 - 12.2.5 Forces on Current-Carrying Wires
 - 12.2.6 Flux Linkages
 - 12.2.7 Faradays Law and Lenzs Law

12.3 Magnetic Circuits

- 12.3.1 Magnetomotive Force
- 12.3.2 Reluctance

12.4 Mutual Inductance and Transformers

- 12.4.1 Mutual Inductance
- 12.4.2 Transformers
- 12.5 Different Types of Transformers
- 12.6 Using PSpice to Simulate Mutual Inductance and Transformers

12.7 What Did You Learn?

Problems

Chapter 13 Electric Machines

13.1 Introduction

- 13.1.1 Features of Electric Machines
- 13.1.2 Classification of Motors

13.2 DC Motors

- 13.2.1 Principle of Operation
- 13.2.2 Assembly of a Typical DC Motor
- 13.2.3 Operation of a DC Motor
- 13.2.4 Losses in DC Machines

13.3 Different Types of DC Motors

- 13.3.1 Analysis of a DC Motor
- 13.3.2 Shunt-Connected DC Motor
- 13.3.3 Separately Excited DC Motors
- 13.3.4 Permanent Magnet (PM) DC Motor
- 13.3.5 Series-Connected DC Motor
- 13.3.6 Summary of DC Motors

13.4 Speed Control Methods

- 13.4.1 Speed Control by Varying the Field Current
- 13.4.2 Speed Control by Varying the Armature Current

13.5 DC Generators

- 13.5.1 The Architecture and Principle of Operation of a DC Generator
- 13.5.2 emf Equation

13.6 Different Types of DC Generators

- 13.6.1 Load Regulation Characteristics of DC Generators
- 13.6.2 Separately Excited DC Generator
- 13.6.3 Shunt-Connected DC Generator

13.7 AC Motors

- 13.7.1 Three-Phase Synchronous Motors
- 13.7.2 Three-Phase Induction Motor
- 13.7.3 Losses in AC Machines

- 13.7.4 Power Flow Diagram for an AC Motor
- 13.8 AC Generators
 - 13.8.1 Construction and Working
 - 13.8.2 Winding Terminologies for the Alternator
 - 13.8.3 The emf Equation of an Alternator
- 13.9 Special Types of Motors
 - 13.9.1 Single-Phase Induction Motors
 - 13.9.2 Stepper Motors
 - 13.9.3 Brushless DC Motors
 - 13.9.4 Universal Motors
- 13.10 How is the Most Suitable Motor Selected?
- 13.11 Setup of a Simple DC Motor Circuit Using PSpice
- 13.12 What Did You Learn?

Further Reading

Problems

Chapter 14 Electrical Measurement Instruments

- 14.1 Introduction
- 14.2 Measurement Errors
- 14.3 Basic Measurement Instruments
 - 14.3.1 An Ammeter Built Using a Galvanometer
 - 14.3.2 A Voltmeter Built Using a Galvanometer
 - 14.3.3 An Ohmmeter Built Using a Galvanometer
 - 14.3.4 Multi-Meters
- 14.4 Time Domain and Frequency Domain
 - 14.4.1 The Time Domain
 - 14.4.2 The Frequency Domain
 - 14.4.3 Time Domain Versus Frequency Domain
- 14.5 The Oscilloscope
- 14.6 The Spectrum Analyzer
 - 14.6.1 Adjusting the Spectrum Analyzers Display Window
- 14.7 The Function Generator

14.8 What Did You Learn?

Problems

Chapter 15 Electrical Safety

15.1 Introduction

15.2 Electric Shock

15.2.1 Shock Effects

15.2.2 Shock Prevention

15.3 Electromagnetic Hazards

15.3.1 High-Frequency Hazards

15.3.2 Low-Frequency Hazards

15.3.3 Avoiding Radio Frequency Hazards

15.4 Arcs and Explosions

15.4.1 Arcs

15.4.2 Blasts

15.4.3 Explosion Prevention

15.5 The National Electric Code

15.5.1 Shock Prevention

15.5.2 Fire Prevention

15.6 What Did You Learn?

References

Problems

Appendix A: Solving Linear Equations

Appendix B: Laplace Transform

Appendix C: Complex Numbers

Selected Solutions

Index

