

Hydrology and Floodplain Analysis

FIFTH EDITION

Philip B. Bedient • Wayne C. Huber • Baxter E. Vieux

FIFTH EDITION

Hydrology and Floodplain Analysis

PHILIP B. BEDIENT

Rice University

WAYNE C. HUBER

Oregon State University

BAXTER E. VIEUX

University of Oklahoma

International Edition contributions by

MURALIDHAR MALLIDU

K.L.E Institute of Technology, Hubli

PEARSON

Upper Saddle River Boston Columbus San Francisco New York Indianapolis London Toronto Sydney Singapore Tokyo Montreal Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

Hydrology and Floodplain Analysis

Table of Contents

Cover
CONTENTS
PRFFACE

1 HYDROLOGIC PRINCIPLES

- 1.1 Introduction to Hydrology
- 1.2 Weather Systems
- 1.3 Precipitation
- 1.4 The Hydrologic Cycle
- 1.5 Simple Rainfall-Runoff
- 1.6 Streamflow and the Hydrograph
- 1.7 Hydrograph Analysis
- 1.8 Hydrologic Measurement

Summary

Problems

References

2 HYDROLOGIC ANALYSIS

- 2.1 Watershed Concepts
- 2.2 Unit Hydrograph Theory
- 2.3 Synthetic Unit Hydrograph Development
- 2.4 Applications of Unit Hydrographs
- 2.5 Linear and Kinematic Wave Models
- 2.6 Hydrologic LossEvaporation and ET

- 2.7 Hydrologic LossInfiltration
- 2.8 Green and Ampt Infiltration Method
- 2.9 Snowfall and Snowmelt

Summary

Problems

References

3 FREQUENCY ANALYSIS

- 3.1 Introduction
- 3.2 Probability Concepts
- 3.3 Random Variables and Probability Distributions
- 3.4 Return Period or Recurrence Interval
- 3.5 Common Probabilistic Models
- 3.6 Graphical Presentation of Data
- 3.7 Regional Analysis
- 3.8 Related Topics

Summary

Problems

References

4 FLOOD ROUTING

- 4.1 Hydrologic and Hydraulic Routing
- 4.2 Hydrologic River Routing
- 4.3 Hydrologic Reservoir Routing
- 4.4 Governing Equations for Hydraulic River Routing
- 4.5 Movement of a Flood Wave
- 4.6 Kinematic Wave Routing
- 4.7 Hydraulic River Routing

Summary

Problems

References

5 HYDROLOGIC SIMULATION MODELS

- 5.1 Introduction to Hydrologic Models
- 5.2 Steps in Watershed Modeling
- 5.3 Description of Major Hydrologic Models
- 5.4 HEC-HMS Flood Hydrograph Theory
- 5.5 Application of HEC-HMS to Watersheds
- 5.6 HEC-HMS Watershed Analysis: Case Study

Summary

Problems

References

6 URBAN HYDROLOGY

- 6.1 Characteristics of Urban Hydrology
- 6.2 Review of Physical Processes
- 6.3 Rainfall Analysis in Urban Basins
- 6.4 Methods for Quantity Analysis
- 6.5 Sewer System Hydraulics
- 6.6 Control Options
- 6.7 Operational Computer Models
- 6.8 Case Study

Summary

Problems

References

7 FLOODPLAIN HYDRAULICS

- 7.1 Uniform Flow
- 7.2 Uniform Flow Computations
- 7.3 Specific Energy and Critical Flow
- 7.4 Occurrence of Critical Depth
- 7.5 Nonuniform Flow or Gradually Varied Flow
- 7.6 Gradually Varied Flow Equations
- 7.7 Classification of Water Surface Profiles
- 7.8 Hydraulic Jump
- 7.9 Introduction to the HEC-RAS Model
- 7.10 Theoretical Basis for HEC-RAS
- 7.11 Basic Data Requirements (Steady State)
- 7.12 Optional HEC-RAS Capabilities
- 7.13 Bridge Modeling in HEC-RAS
- 7.14 HEC-RAS Features

Summary

Problems

References

8 GROUND WATER HYDROLOGY

- 8.1 Introduction
- 8.2 Properties of Ground Water
- 8.3 Ground Water Movement
- 8.4 Flow Nets
- 8.5 General Flow Equations
- 8.6 Dupuit Equation
- 8.7 Streamlines and Equipotential Lines
- 8.8 Unsaturated Flow
- 8.9 Steady-State Well Hydraulics

- 8.10 Unsteady Well Hydraulics
- 8.11 Water Wells
- 8.12 Ground Water Modeling Techniques

Summary

Problems

References

9 DESIGN APPLICATIONS IN HYDROLOGY

- 9.1 Introduction
- 9.2 Drainage Collection Systems
- 9.3 Design of Culverts
- 9.4 Detention Basins Used to Mitigate Project Impacts
- 9.5 Floodplain Management Design Issues

Summary

Problems

References

10 GIS APPLICATIONS IN HYDROLOGY

- 10.1 Introduction to GIS
- 10.2 General GIS Concepts
- 10.3 Digital Representation Hydrologic Parameters
- 10.4 Digital Representation of Topography
- 10.5 GIS-Based Hydrology and Hydraulics
- 10.6 Common GIS Software Programs

Summary

Online Resources

References

11 RADAR RAINFALL APPLICATIONS IN HYDROLOGY

- 11.1 Introduction
- 11.2 Radar Estimation of Rainfall
- 11.3 NEXRAD (WSR-88D) Radar System
- 11.4 Gage Adjustment of Radar
- 11.5 Hydrologic Applications

Summary

References

12 SEVERE STORM IMPACTS AND FLOOD MANAGEMENT

- 12.1 Introduction
- 12.2 Flood Management Issues and Basic Terminology
- 12.3 Structural and Nonstructural Methods of Flood Control
- 12.4 The Flood Control Paradox
- 12.5 Major Gulf Hurricanes: Katrina and Ike
- 12.6 Improved Strategies Toward Flood Management

Summary

References

13 CASE STUDIES IN HYDROLOGIC ENGINEERING: WATER RESOURCE PROJECTS

- 13.1 Introduction
- 13.2 The City of San Antonio Deep in the Heart of Texas
- 13.3 The Colorado RiverTaming the Wild West
- 13.4 Across the PondThe River Thames
- 13.5 Global Climate Change and Water Resources

References

APPENDIX A: SYMBOLS AND NOTATION

APPENDIX B: CONVERSION FACTORS

APPENDIX C: PROPERTIES OF WATER

APPENDIX D: NORMAL DISTRIBUTION TABLES

APPENDIX E: USEFUL HYDROLOGY-RELATED INTERNET

LINKS

GLOSSARY

Α

В

C

D

Ε

F

G

Н

J

K

L

Μ

Ν

Ο

Р

Q

R

S

Τ

U

V W INDEX