BASIC PRINCIPLES AND CALCULATIONS IN CHEMICAL ENGINEERING

NINTH EDITION

DAVID M. HIMMELBLAU • JAMES B. RIGGS

Conversion Factors

Instructions: Locate the given units on the row on the left-hand side of the table. Next, locate the desired units at the top of the column of the table. The conversion factor from the given units to the desired units is listed at the intersection of the row and the column. For example, to convert miles to feet, multiply by 5280.

Length Equivalents

	meter	kilometer	inch	foot	mile
meter	1	10 ⁻³	39.37	3.2808	6.214×10^{-4}
kilometer	1000	1	3.937×10^4	3280.8	0.6214
inch	0.02540	2.540×10^{-5}	1	0.08333	1.5783×10^{-5}
foot	0.3048	3.048×10^{-4}	12	1	1.894×10^{-4}
mile	1609.3	1.61	6.336×10^4	5280	1

Mass Equivalents

	grams	kilograms	metric ton	pounds	ton
grams	1	10-3	10 ⁻⁶	2.2046×10^{-3}	1.102×10^{-6}
kilograms	1000	1	10 ⁻³	2.2046	1.102×10^{-3}
metric ton	10^{6}	1000	1	2204.6	1.1023
pounds	453.6	0.4536	4.536×10^{-4}	1	5×10^{-4}
ton	9.072×10^5	907.2	0.9072	2000	1

Volume Equivalents

	liters	m ³	in ³	US gallon	ft ³
liters	1	10 ⁻³	61.023	0.2642	0.03531
m ³	1000	1	61.023×10^3	264.2	35.31
in ³	1.639×10^{-2}	1.639×10^{-5}	1	4.329×10^{-3}	5.787×10^{-4}
US gallon	3.785	3.785×10^{-3}	231	1	0.1337
ft ³	28.32	0.02832	1.728×10^3	7.481	1

Basic Principles and Calculations in Chemical Engineering

Table of Contents

Cover

Half Title

Title Page

Copyright Page

Dedication

Table of Contents

PREFACE

HOW TO USE THIS BOOK

ACKNOWLEDGMENTS

ABOUT THE AUTHORS

PART I: INTRODUCTION

CHAPTER 1 INTRODUCTION TO CHEMICAL ENGINEERING

- 1.1 A Brief History of Chemical Engineering
- 1.2 Types of Jobs Chemical Engineers Perform
- 1.3 Industries in Which Chemical Engineers Work
- 1.4 Sustainability
- 1.5 Ethics

CHAPTER 2 INTRODUCTORY CONCEPTS

- 2.1 Units of Measure
- 2.2 Unit Conversions
- 2.3 Equations and Units
- 2.4 Measurement Errors and Significant Figures
- 2.5 Validation of Results
- 2.6 Mass, Moles, and Density
- 2.7 Process Variables

Table of Contents

PART II: MATERIAL BALANCES

CHAPTER 3 MATERIAL BALANCES

- 3.1 The Connection between a Process and Its Schematic
- 3.2 Introduction to Material Balances
- 3.3 A General Strategy for Solving Material Balance Problems
- 3.4 Material Balances for Single Unit Systems
- 3.5 Vectors and Matrices
- 3.6 Solving Systems of Linear Equations with MATLAB
- 3.7 Solving Systems of Linear Equations with Python

CHAPTER 4 MATERIAL BALANCES WITH CHEMICAL REACTION

- 4.1 Stoichiometry
- 4.2 Terminology for Reaction Systems
- 4.3 Species Mole Balances
- 4.4 Element Material Balances
- 4.5 Material Balances for Combustion Systems

CHAPTER 5 MATERIAL BALANCES FOR MULTIUNIT PROCESSES

- 5.1 Preliminary Concepts
- 5.2 Sequential Multiunit Systems
- 5.3 Recycle Systems
- 5.4 Bypass and Purge
- 5.5 The Industrial Application of Material Balances

PART III: GASES, VAPORS, AND LIQUIDS

CHAPTER 6 IDEAL AND REAL GASES

- 6.1 Ideal Gases
- 6.2 Real Gases: Equations of State
- 6.3 Real Gases: Compressibility Charts
- 6.4 Real Gas Mixtures

CHAPTER 7 MULTIPHASE EQUILIBRIUM

- 7.1 Introduction
- 7.2 Phase Diagrams and the Phase Rule
- 7.3 Single-Component Two-Phase Systems (Vapor Pressure)
- 7.4 Two-Component Gas/Single-Component Liquid Systems

Table of Contents

- 7.5 Two-Component Gas/Two-Component Liquid Systems
- 7.6 Multicomponent Vapor-Liquid Equilibrium

PART IV: ENERGY BALANCES

CHAPTER 8 ENERGY BALANCES WITHOUT REACTION

- 8.1 Terminology Associated with Energy Balances
- 8.2 Overview of Types of Energy and Energy Balances
- 8.3 Energy Balances for Closed, Unsteady-State Systems
- 8.4 Energy Balances for Open, Steady-State Systems
- 8.5 Mechanical Energy Balances
- 8.6 Energy Balances for Special Cases

CHAPTER 9 ENERGY BALANCES WITH REACTION

- 9.1 The Standard Heat (Enthalpy) of Formation
- 9.2 The Heat (Enthalpy) of Reaction
- 9.3 Integration of Heat of Formation and Sensible Heat
- 9.4 The Heat (Enthalpy) of Combustion

PART V: COMBINED MATERIAL AND ENERGY BALANCES

CHAPTER 10 HUMIDITY (PSYCHROMETRIC) CHARTS

- 10.1 Terminology
- 10.2 The Humidity (Psychrometric) Chart
- 10.3 Applications of the Humidity Chart

CHAPTER 11 UNSTEADY-STATE MATERIAL AND ENERGY BALANCES

- 11.1 Unsteady-State Balances
- 11.2 Numerical Integration of ODEs
- 11.3 Examples

CHAPTER 12 HEATS OF SOLUTION AND MIXING

CHAPTER 13 LIQUIDS AND GASES IN EQUILIBRIUM WITH SOLIDS

CHAPTER 14 SOLVING MATERIAL AND ENERGY BALANCES USING PROCESS SIMULATORS (FLOWSHEETING CODES)

PART VI: SUPPLEMENTARY MATERIAL

APPENDIXES

A ATOMIC WEIGHTS AND NUMBERS

Table of Contents

B TABLES OF THE PITZER Z[sup(0)] AND Z[sup(-1)] FACTORS

C HEATS OF FORMATION AND COMBUSTION

D ANSWERS TO SELECTED PROBLEMS

E PHYSICAL PROPERTIES OF VARIOUS ORGANIC AND INORGANIC SUBSTANCES

F HEAT CAPACITY EQUATIONS

G VAPOR PRESSURES

H HEATS OF SOLUTION AND DILUTION

I ENTHALPY-CONCENTRATION DATA

J THERMODYNAMIC CHARTS

K PHYSICAL PROPERTIES OF PETROLEUM FRACTIONS

L SOLUTION OF SETS OF EQUATIONS

M FITTING FUNCTIONS TO DATA

INDEX

