
CHEMICAL PROCESS SAFETY

FUNDAMENTALS WITH APPLICATIONS

FOURTH EDITION

Daniel A. Crowl • Joseph F. Louvar

Chemical Process Safety

Fourth Edition

Chemical Process Safety: Fundamentals with Applications

Table of Contents

Cover

Title Page

Copyright Page

Contents

Preface

About the Authors

Nomenclature

- 1 Introduction
 - 1-1 Engineering Ethics
 - 1-2 Myths about Process Safety
 - Myth 1: Process safety costs a lot of money and has a negative impact on the companys bottom line.
 - Myth 2: Process safety is the same as personal or even laboratory safety.
 - Myth 3: Process safety is no more than following rules and regulations.
 - Myth 4: Process safety is a soft scienceno more than hard hats or safety shoesnot engineering science.
 - Myth 5: Process safety applies only to the petrochemical industry.
 - Myth 6: Industry should train graduates in process safety; this topic should not be a part of the undergraduate engineering curriculum.
 - Myth 7: Process safety does not include product safety.
 - 1-3 Safety Culture
 - 1-4 Individual Risk, Societal Risk, and Risk Populations

- 1-5 Voluntary and Involuntary Risk
- 1-6 Safety Metrics
- 1-7 Accident and Loss Statistics
- 1-8 Risk Perception
- 1-9 Risk Tolerance/Acceptance and Risk Matrix
- 1-10 Codes, Standards, and Regulations
- 1-11 Safeguards
- 1-12 The CCPS 20 Elements of Risk-Based Process Safety
- 1-13 Inherently Safer Design
- 1-14 The Worst Chemical Plant Tragedy: Bhopal, India, 1984
- 1-15 Overview of Chemical Process Safety

Suggested Reading

Problems

2 Toxicology

2-1 How Toxicants Enter the Body

Gastrointestinal Tract

Skin

Respiratory System

- 2-2 How Toxicants Are Eliminated from the Body
- 2-3 Effects of Toxicants on the Body
- 2-4 Toxicological Studies
- 2-5 Dose versus Response
- 2-6 Dose and Response Using Probit Equation
- 2-7 Relative Toxicity
- 2-8 Threshold Limit Values

Online Resources

Suggested Reading

Problems

3 Industrial Hygiene

- 3-1 Anticipating and Identifying Hazardous Workplace Exposures
- 3-2 Globally Harmonized System

Globally Harmonized System for Safety Data Sheets

Globally Harmonized System for Labeling

3-3 Evaluate the Magnitude of Exposures and Responses

Evaluating Exposures to Volatile Toxicants by Monitoring

Evaluating Worker Exposures to Dusts

Evaluating Worker Exposures to Noise

Evaluating Worker Exposures to Thermal Radiation

Estimating Worker Exposures to Toxic Vapors

Estimating the Vaporization Rate of a Liquid

Estimating Worker Exposures during Vessel Filling Operations

3-4 Develop and Evaluate Control Techniques to Prevent Exposures

Respirators

Ventilation

3-5 National Fire Protection Association Diamond

Online Resources

Suggested Reading

Problems

4 Source Models

- 4-1 Introduction to Source Models
- 4-2 Flow of Liquid through a Hole
- 4-3 Flow of Liquid through a Hole in a Tank
- 4-4 Flow of Liquids through Pipes
 - 2-K Method
- 4-5 Flow of Gases or Vapors through Holes

4-6 Flow of Gases or Vapors through Pipes

Adiabatic Flows

Isothermal Flows

- 4-7 Flashing Liquids
- 4-8 Liquid Pool Evaporation or Boiling
- 4-9 Realistic and Worst-Case Releases
- 4-10 Conservative Analysis

Suggested Reading

Problems

5 Hazardous Material Dispersion

- 5-1 Parameters Affecting Dispersion
- 5-2 Neutrally Buoyant Dispersion Models
- 5-3 PasquillGifford Model
 - Case 1: Puff with Instantaneous Point Source at Ground Level, Coordinates
 Fixed at Release Point, Constant Wind Only in x Direction with Constant
 Velocity u
 - Case 2: Plume with Continuous Steady-State Source at Ground Level and Wind Moving in x Direction at Constant Velocity u
 - Case 3: Plume with Continuous Steady-State Source at Height Hr above Ground Level and Wind Moving in x Direction at Constant Velocity u
 - Case 4: Puff with Instantaneous Point Source at Height Hr above Ground

 Level and a Coordinate System on the Ground That Moves with the Puff
 - Case 5: Puff with Instantaneous Point Source at Height Hr above Ground Level and a Coordinate System Fixed on the Ground at the Release Point

Isopleths

Effect of Release Momentum and Buoyancy

Worst-Case Dispersion Conditions

Limitations to PasquillGifford Dispersion Modeling

5-4 Dense Gas Dispersion

5-5 Toxic Effect Criteria

Emergency Response Planning Guidelines

Immediately Dangerous to Life and Health

Emergency Exposure Guidance Levels and Short-Term Public Emergency Guidance Levels

Acute Exposure Guideline Levels

Threshold Limit Values

Permissible Exposure Limits

Toxic Endpoints

5-6 Release Prevention and Mitigation

Suggested Reading

Problems

6 Fires and Explosions

- 6-1 The Fire Triangle
- 6-2 Distinction between Fires and Explosions
- 6-3 Definitions
- 6-4 Flammability Characteristics of Liquids and Vapors

Liquids

Gas and Vapor Mixtures

Flammability Limit Dependence on Temperature

Flammability Limit Dependence on Pressure

Estimating Flammability Limits

Limiting Oxygen Concentration (LOC) and Inerting

Flammability Diagram

Autoignition

Auto-Oxidation

Adiabatic Compression

6-5 Flammability Characteristics of Dusts

- 6-6 Sprays and Mists
- 6-7 Ignition Energy
- 6-8 Ignition Sources
- 6-9 Experimental Characterization of Gas/Vapor and Dust Explosions

Gases/Vapors

Dusts

Application of Flammability Data of Gases/Vapors and Dusts

6-10 Explosions

Detonation and Deflagration

Confined Explosions

Blast Damage Resulting from Overpressure

TNT Equivalency

TNO Multi-Energy Method

Energy of Chemical Explosions

Energy of Mechanical Explosions

Missile Damage

Blast Damage to People

Vapor Cloud Explosions (VCE)

Boiling-Liquid Expanding-Vapor Explosions

Suggested Reading

Problems

7 Concepts to Prevent Fires and Explosions

7-1 Inerting

Vacuum Purging

Pressure Purging

Combined PressureVacuum Purging

Vacuum and Pressure Purging with Impure Nitrogen

Sweep-Through Purging

Siphon Purging

Using the Flammability Diagram to Avoid Flammable Atmospheres

7-2 Static Electricity

Fundamentals of Static Charge

Charge Accumulation

Electrostatic Discharges

Energy from Electrostatic Discharges

Energy of Electrostatic Ignition Sources

Streaming Current

Electrostatic Voltage Drops

Energy of Charged Capacitors

Capacitance of a Body

7-3 Controlling Static Electricity

General Design Methods to Prevent Electrostatic Ignitions

Relaxation

Bonding and Grounding

Dip Pipes

Increasing Conductivity with Additives

Handling Solids without Flammable Vapors

Handling Solids with Flammable Vapors

7-4 Explosion-Proof Equipment and Instruments

Explosion-Proof Housings

Area and Material Classification

Design of an XP Rated Area

7-5 Ventilation

Open-Air Plants

Plants Inside Buildings

7-6 Sprinkler Systems

7-7 Industrys Fire and Explosion Protection Strategy

Practices

Passive and Active Systems

Plant Fire Protection Infrastructure

Documentation of Fire and Explosion Protection Strategy

Suggested Reading

Problems

8 Chemical Reactivity

- 8-1 Background Understanding
- 8-2 Commitment, Awareness, and Identification of Reactive Chemical Hazards
- 8-3 Characterization of Reactive Chemical Hazards Using Calorimeters

Introduction to Reactive Hazards Calorimetry

Theoretical Analysis of Calorimeter Data

Estimation of Parameters from Calorimeter Data

Adjusting the Data for the Heat Capacity of the Sample Vessel

Heat of Reaction Data from Calorimeter Data

Using Pressure Data from the Calorimeter

Application of Calorimeter Data

8-4 Controlling Reactive Hazards

Suggested Reading

Problems

9 Introduction to Reliefs

- 9-1 Relief Concepts
- 9-2 Definitions
- 9-3 Code Requirements
- 9-4 Relief System Design

Fire Protection

9-5 Relief Types and Characteristics

Spring-Operated Reliefs

Rupture Discs

Buckling or Rupture Pin Reliefs

Pilot-Operated Reliefs

Advantages and Disadvantages of Various Reliefs

9-6 Relief Installation Practices

9-7 Relief Effluent Handling

Horizontal Knockout Drum

Flares

Scrubbers

Condensers

Suggested Reading

Problems

10 Relief Sizing

- 10-1 Set Pressure and Accumulation Limits for Reliefs
- 10-2 Relief Sizing for Liquid Service
- 10-3 Relief Sizing for Vapor and Gas Service

Subcritical Vapor/Gas Flow

Steam Flow Relief Sizing

Rupture Disc Sizing

Pilot-Operated Relief Sizing

Buckling Pin Relief Sizing

- 10-4 Two-Phase Flow during Runaway Reaction Relief
- 10-5 Deflagration Venting for Dust and Vapor Explosions

Vents for Gases/Vapors and Mists

Vents for Dusts and Hybrid Mixtures

10-6 Venting for Fires External to the Process

10-7 Reliefs for Thermal Expansion of Process Fluids

Suggested Reading

Problems

11 Hazards Identification and Evaluation

- 11-1 Introduction to Hazard Identification/ Evaluation and Risk Analysis
- 11-2 Non-Scenario-Based Hazard Identification/Evaluation Methods

Checklist Analysis

Safety Reviews

Inherent Safety Reviews

Preliminary Hazard Analysis

Relative Ranking

11-3 Scenario-Based Hazard Identification/Evaluation Methods

Hazard and Operability Studies

Failure Modes and Effects Analysis

What-If Analysis

What-If/Checklist Analysis

11-4 Documentation and Actions Required for Hazard Identification and Evaluation

Suggested Reading

Problems

12 Risk Analysis and Assessment

12-1 Review of Probability Theory

Interactions between Process Units

Revealed and Unrevealed Failures

Probability of Coincidence

Redundancy

Common-Cause Failures

12-2 Event Trees

12-3 Fault Trees

Determining the Minimal Cut Sets

Quantitative Calculations Using the Fault Tree

Advantages and Disadvantages of Fault Trees

12-4 Bow-Tie Diagrams

12-5 Quantitative Risk Analysis

12-6 Layer of Protection Analysis

Estimating the LOPA Consequence

Estimating the LOPA Frequency

12-7 Risk Assessment

Consequence versus Frequency Plot

Individual Risk: Risk Contours

Societal Risk: F-N Plots

Suggested Reading

Problems

13 Safety Strategies, Procedures, and Designs

13-1 Process Safety Strategies

Process Safety Hierarchy

Human Factors

Managing Safety

Incident Investigations

Root Cause Analysis

13-2 Safe Operating Procedures

13-3 Safe Work Practices

Hot Work

Energy Isolation (Lock-Out/Tag-OutLOTO; Lock, Tag, Try)

Confined-Space Entry (Vessel Entry)

13-4 Designs for Process Safety

Inherently Safer Designs

Controls: Emergency Isolation Valves
Controls: Double Block and Bleed

Controls: Safeguards and Redundancy

Controls: Explosion Suppression

Flame Arrestors

Containment

Materials of Construction

Process Vessels

Miscellaneous Designs for Preventing Fires and Explosions

13-5 Designs for Runaway Reactions

13-6 Designs and Practices for the Safe Handling of Dusts

Preventing Dust Explosions

Suggested Reading

Problems

14 Case Histories and Lessons Learned

14-1 Process Safety Culture

Case History: Explosions at a Refinery Due to Inadequate Process Safety
Culture

14-2 Compliance with Standards

Case History: Dust Explosions at a Pharmaceutical Plant Due to Inadequate Training on the Use of Standards

14-3 Process Safety Competency

Case History: An Explosion of a Blender Due to Inadequate Knowledge of Chemical Process Safety

14-4 Workplace Involvement

Case History: A Fatality in a Ribbon Blender Due to an Inadequate Lock-Out/Tag-Out Permit System

14-5 Stakeholder Outreach

Case History: Increased Consequences in an Adjacent Community Due to Inadequate Outreach

14-6 Process Knowledge Management

Case History: A Runaway Reaction and Explosion Due to Inadequate Process Knowledge Management

14-7 Hazard Identification and Risk Analysis

Case History: A Chemical Release and Fire Due to Inadequate Identification of Brittle

Metal Failure

14-8 Operating Procedures

Case History: A Fatality from a Runaway Reaction Due to Inadequate

Training on the Use of Procedures

Case History: Runaway Reaction and Explosion Due to Inadequate Procedures

14-9 Safe Work Practices

Case History: An Explosion Due to a Missing Hot-Work-Permit System

14-10 Asset Integrity and Reliability

Case History: A Catastrophic Pipe Rupture Due to an Inadequate Asset Integrity Program

14-11 Contractor Management

Case History: Fire and Fatalities in a Tunnel Due to Poor Management of Contractors

14-12 Training and Performance Assurance

Case History: An LPG Leak and BLEVE Due to Inadequate Training

14-13 Management of Change

Case History: An Explosion Due to Missing Management of Change Procedure

14-14 Operational Readiness

Case History: A Fatality in a Ribbon Blender Due to an Inadequate Pre-Startup Safety Review

14-15 Conduct of Operations

Case History: Explosions in a Refinery Due to Inadequate Conduct of

$\overline{}$				٠.			
0	n	\sim	~	t١	\sim	n	C
${}$	v	ᄗ	а	u	v	ıı	J

Case History: A Toxic Release Due to Inadequate Conduct of Operations

14-16 Emergency Management

Case History: An Ammonium Nitrate Explosion Due to Inadequate Emergency Management

Case History: An Explosion in a Pesticide Plant Due to Inadequate Emergency Management

14-17 Incident Investigation

Case History: Space Shuttle Fatalities Caused by Inadequate Incident Investigations

Case History: Explosions in a Sugar Refinery Due to Inadequate Incident Investigations

14-18 Measurement and Metrics

Case History: Flight Failure of Mars Orbiter Due to Inadequate Analysis of Flight Path Deviations

Case History: Explosions in an Oil Refinery Due to Inadequate Focus on Process Safety Metrics

14-19 Auditing

Case History: Explosion in a Gas Plant Due to an Inadequate Audit of Asset Integrity and Reliability

14-20 Management Review and Continuous Improvement

Case History: An Explosion Due to the Failure of Many RBPS Elements

14-21 Summary

Suggested Reading

Problems

A: Unit Conversion Constants

B: Flammability Data for Selected Hydrocarbons

C: Saturation Vapor Pressure Data

D: Special Types of Reactive Chemicals

E: Hazardous Chemicals Data for a Variety of Chemical Substances

F: Process Diagrams

Index

