
REGRESSION ANALYSIS

Microsoft® Excel®

Regression Analysis Microsoft® Excel®

Conrad Carlberg

800 East 96th Street, Indianapolis, Indiana 46240 USA

Contents at a Glance

	Introduction	
1	Measuring Variation: How Values Differ	
2	Correlation	29
3	Simple Regression	59
4	Using the LINEST() Function	10
5	Multiple Regression	15
6	Assumptions and Cautions Regarding Regression Analysis	199
7	Using Regression to Test Differences Between Group Means	24
8	The Analysis of Covariance	29
	Index	33.

Regression Analysis Microsoft Excel

Table of Contents

(`	\sim	١,	۵	r
l		()	v	ᆫ	ı

Title Page

Copyright Page

Contents

Introduction

1 Measuring Variation: How Values Differ

How Variation Is Measured

Sum of Deviations

Summing Squared Deviations

From the Sum of Squares to the Variance

Using the VAR.P() and VAR.S() Functions

The Standard Deviation

The Standard Error of the Mean

About z-Scores and z-Values

About t-Values

2 Correlation

Measuring Correlation

Expressing the Strength of a Correlation

Determining a Correlations Direction

Calculating Correlation

Step One: The Covariance

Watching for Signs

From the Covariance to the Correlation Coefficient

Using the CORREL() Function

Understanding Bias in the Correlation

Checking for Linearity and Outliers in the Correlation

Avoiding a Trap in Charting

Correlation and Causation

Direction of Cause

A Third Variable

Restriction of Range

3 Simple Regression

Predicting with Correlation and Standard Scores

Calculating the Predictions

Returning to the Original Metric

Generalizing the Predictions

Predicting with Regression Coefficient and Intercept

The SLOPE() Function

The INTERCEPT() Function

Charting the Predictions

Shared Variance

The Standard Deviation, Reviewed

More About Sums of Squares

Sums of Squares Are Additive

R[Sup(2)] in Simple Linear Regression

Sum of Squares Residual versus Sum of Squares Within

The TREND() Function

Array-entering TREND()

TREND()s new xs Argument

TREND()s const Argument

Calculating the Zero-constant Regression

Partial and Semipartial Correlations

Partial Correlation

Understanding Semipartial Correlations

4 Using the LINEST() Function

Array-Entering LINEST()

Understanding the Mechanics of Array Formulas

Inventorying the Mistakes

Comparing LINEST() to SLOPE() and INTERCEPT()

The Standard Error of a Regression Coefficient

The Meaning of the Standard Error of a Regression Coefficient

A Regression Coefficient of Zero

Measuring the Probability That the Coefficient is Zero in the Population

Statistical Inference as a Subjective Decision

The t-ratio and the F-ratio

Interval Scales and Nominal Scales

The Squared Correlation, R[Sup(2)]

The Standard Error of Estimate

The t Distribution and Standard Errors

Standard Error as a Standard Deviation of Residuals

Homoscedasticity: Equal Spread

Understanding LINEST()s F-ratio

The Analysis of Variance and the F-ratio in Traditional Usage

The Analysis of Variance and the F-ratio in Regression

Partitioning the Sums of Squares in Regression

The F-ratio in the Analysis of Variance

The F-ratio in Regression Analysis

The F-ratio Compared to R[Sup(2)]

The General Linear Model, ANOVA, and Regression Analysis

Other Ancillary Statistics from LINEST()

与	N/Lulti	വച	Ragi	ression
J	iviuiti	סוס	ııcgı	6331011

A Composite Predictor Variable

Generalizing from the Single to the Multiple Predictor

Minimizing the Sum of the Squared Errors

Understanding the Trendline

Mapping LINEST()s Results to the Worksheet

Building a Multiple Regression Analysis from the Ground Up

Holding Variables Constant

Semipartial Correlation in a Two-Predictor Regression

Finding the Sums of Squares

R[Sup(2)] and Standard Error of Estimate

F-Ratio and Residual Degrees of Freedom

Calculating the Standard Errors of the Regression Coefficients

Some Further Examples

Using the Standard Error of the Regression Coefficient

Arranging a Two-Tailed Test

Arranging a One-Tailed Test

Using the Models Comparison Approach to Evaluating Predictors

Obtaining the Models Statistics

Using Sums of Squares Instead of R[Sup(2)]

Estimating Shrinkage in R[Sup(2)]

6 Assumptions and Cautions Regarding Regression Analysis

About Assumptions

Robustness: It Might Not Matter

Assumptions and Statistical Inference

The Straw Man

Coping with Nonlinear and Other Problem Distributions

The Assumption of Equal Spread

Using Dummy Coding

Comparing the Regression Approach to the t-test Approach

Two Routes to the Same Destination

Unequal Variances and Sample Sizes

Unequal Spread: Conservative Tests

Unequal Spread: Liberal Tests

Unequal Spreads and Equal Sample Sizes

Using LINEST() Instead of the Data Analysis Tool

Understanding the Differences Between the T.DIST() Functions

Using Welchs Correction

The TTEST() Function

7 Using Regression to Test Differences Between Group Means

Dummy Coding

An Example with Dummy Coding

Populating the Vectors Automatically

The Dunnett Multiple Comparison Procedure

Effect Coding

Coding with -1 Instead of 0

Relationship to the General Linear Model

Multiple Comparisons with Effect Coding

Orthogonal Coding

Establishing the Contrasts

Planned Orthogonal Contrasts Via ANOVA

Planned Orthogonal Contrasts Using LINEST()

Factorial Analysis

Factorial Analysis with Orthogonal Coding

Factorial Analysis with Effect Coding

Statistical Power, Type I and Type II Errors

Calculating Statistical Power

Increasing Statistical Power

Coping with Unequal Cell Sizes

Using the Regression Approach

Sequential Variance Assignment

8 The Analysis of Covariance

Contrasting the Results

ANCOVA Charted

Structuring a Conventional ANCOVA

Analysis Without the Covariate

Analysis with the Covariate

Structuring an ANCOVA Using Regression

Checking for a Common Regression Line

Summarizing the Analysis

Testing the Adjusted Means: Planned Orthogonal Coding in ANCOVA

ANCOVA and Multiple Comparisons Using the Regression Approach

Multiple Comparisons via Planned Nonorthogonal Contrasts

Multiple Comparisons with Post Hoc Nonorthogonal Contrasts

Index

