

IoT Fundamentals

Networking Technologies, Protocols, and Use Cases for the Internet of Things

David Hanes • Gonzalo Salgueiro
Patrick Grossetete • Rob Barton • Jerome Henry
Foreword by Rowan Trollope

IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things

David Hanes, CCIE No. 3491 Gonzalo Salgueiro, CCIE No. 4541 Patrick Grossetete Robert Barton, CCIE No. 6660, CCDE No. 2013:6 Jerome Henry, CCIE No. 24750

Cisco Press

IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things

Table of Contents

Cover

Title Page

Copyright Page

About the Author

Dedications

Contents

Foreword

Introduction

Part I: Introduction to IoT

Chapter 1 What Is IoT?

Genesis of IoT

IoT and Digitization

IoT Impact

Connected Roadways

Connected Factory

Smart Connected Buildings

Smart Creatures

Convergence of IT and OT

IoT Challenges

Summary

References

Chapter 2 IoT Network Architecture and Design

Drivers Behind New Network Architectures

Scale

Security

Constrained Devices and Networks

Data

Legacy Device Support

Comparing IoT Architectures

The oneM2M IoT Standardized Architecture

The IoT World Forum (IoTWF) Standardized Architecture

Layer 1: Physical Devices and Controllers Layer

Layer 2: Connectivity Layer

Layer 3: Edge Computing Layer

Upper Layers: Layers 47

IT and OT Responsibilities in the IoT Reference Model

Additional IoT Reference Models

A Simplified IoT Architecture

The Core IoT Functional Stack

Layer 1: Things: Sensors and Actuators Layer

Layer 2: Communications Network Layer

Access Network Sublayer

Gateways and Backhaul Sublayer

Network Transport Sublayer

IoT Network Management Sublayer

Layer 3: Applications and Analytics Layer

Analytics Versus Control Applications

Data Versus Network Analytics

Data Analytics Versus Business Benefits

Smart Services

IoT Data Management and Compute Stack

Fog Computing

Edge Computing

The Hierarchy of Edge, Fog, and Cloud

Summary

References

Part II: Engineering IoT Networks

Chapter 3 Smart Objects: The Things in IoT

Sensors, Actuators, and Smart Objects

Sensors

Actuators

Micro-Electro-Mechanical Systems (MEMS)

Smart Objects

Smart Objects: A Definition

Trends in Smart Objects

Sensor Networks

Wireless Sensor Networks (WSNs)

Communication Protocols for Wireless Sensor Networks

Summary

Chapter 4 Connecting Smart Objects

Communications Criteria

Range

Frequency Bands

Power Consumption

Topology

Constrained Devices

Constrained-Node Networks

Data Rate and Throughput

Latency and Determinism

Overhead and Payload

IoT Access Technologies

IEEE 802.15.4

Standardization and Alliances

Physical Layer

MAC Layer

Topology

Security Competitive Technologies IEEE 802.15.4 Conclusions IEEE 802.15.4g and 802.15.4e Standardization and Alliances Physical Layer MAC Layer Topology Security Competitive Technologies IEEE 802.15.4g and 802.15.4e Conclusions IEEE 1901.2a Standardization and Alliances Physical Layer MAC Layer Topology Security Competitive Technologies IEEE 1901.2a Conclusions IEEE 802.11ah Standardization and Alliances Physical Layer MAC Layer Topology Security Competitive Technologies IEEE 802.11ah Conclusions LoRaWAN Standardization and Alliances Physical Layer

MAC Layer Topology Security

Competitive Technologies

LoRaWAN Conclusions

NB-IoT and Other LTE Variations

Standardization and Alliances

LTE Cat 0

LTE-M

NB-IoT

Topology

Competitive Technologies

NB-IoT and Other LTE Variations Conclusions

Summary

Chapter 5 IP as the IoT Network Layer

The Business Case for IP

The Key Advantages of Internet Protocol

Adoption or Adaptation of the Internet Protocol

The Need for Optimization

Constrained Nodes

Constrained Networks

IP Versions

Optimizing IP for IoT

From 6LoWPAN to 6Lo

Header Compression

Fragmentation

Mesh Addressing

Mesh-Under Versus Mesh-Over Routing

6Lo Working Group

6TiSCH

RPL

Objective Function (OF)

Rank

RPL Headers

Metrics

Authentication and Encryption on Constrained Nodes

ACE

DICE

Profiles and Compliances

Internet Protocol for Smart Objects (IPSO) Alliance

Wi-SUN Alliance

Thread

IPv6 Ready Logo

Summary

Chapter 6 Application Protocols for IoT

The Transport Layer

IoT Application Transport Methods

Application Layer Protocol Not Present

SCADA

A Little Background on SCADA

Adapting SCADA for IP

Tunneling Legacy SCADA over IP Networks

SCADA Protocol Translation

SCADA Transport over LLNs with MAP-T

Generic Web-Based Protocols

IoT Application Layer Protocols

CoAP

Message Queuing Telemetry Transport (MQTT)

Summary

Chapter 7 Data and Analytics for IoT

An Introduction to Data Analytics for IoT

Structured Versus Unstructured Data

Data in Motion Versus Data at Rest

IoT Data Analytics Overview

IoT Data Analytics Challenges

Machine Learning

Machine Learning Overview

Supervised Learning

Unsupervised Learning

Neural Networks

Machine Learning and Getting Intelligence from Big Data

Predictive Analytics

Big Data Analytics Tools and Technology

Massively Parallel Processing Databases

NoSQL Databases

Hadoop

YARN

The Hadoop Ecosystem

Apache Kafka

Lambda Architecture

Edge Streaming Analytics

Comparing Big Data and Edge Analytics

Edge Analytics Core Functions

Distributed Analytics Systems

Network Analytics

Flexible NetFlow Architecture

FNF Components

Flexible NetFlow in Multiservice IoT Networks

Summary

References

Chapter 8 Securing IoT

A Brief History of OT Security

Common Challenges in OT Security

Erosion of Network Architecture

Pervasive Legacy Systems

Insecure Operational Protocols

Modbus

DNP3 (Distributed Network Protocol)

ICCP (Inter-Control Center Communications Protocol)

OPC (OLE for Process Control)

International Electrotechnical Commission (IEC) Protocols

Other Protocols

Device Insecurity

Dependence on External Vendors

Security Knowledge

How IT and OT Security Practices and Systems Vary

The Purdue Model for Control Hierarchy

OT Network Characteristics Impacting Security

Security Priorities: Integrity, Availability, and Confidentiality

Security Focus

Formal Risk Analysis Structures: OCTAVE and FAIR

OCTAVE

FAIR

The Phased Application of Security in an Operational Environment

Secured Network Infrastructure and Assets

Deploying Dedicated Security Appliances

Higher-Order Policy Convergence and Network Monitoring

Summary

Part III: IoT in Industry

Chapter 9 Manufacturing

An Introduction to Connected Manufacturing

An IoT Strategy for Connected Manufacturing

Business Improvements Driven Through IoT

An Architecture for the Connected Factory

Industrial Automation and Control Systems Reference Model

The CPwE Reference Model

CPwE Resilient Network Design

Resilient Ethernet Protocol (REP)

Business Value of Resiliency in Converged Networks

CPwE Wireless

CPwE Wireless Network Architecture

Real-Time Location System (RTLS)

Industrial Automation Control Protocols

EtherNet/IP and CIP

PROFINET

The PROFINET Architecture

Media Redundancy Protocol (MRP)

Modbus/TCP

Connected Factory Security

A Holistic Approach to Industrial Security

Network Address Translation in the Factory

The Industrial DMZ

Factory Security Identity Services

Edge Computing in the Connected Factory

Connected Machines and Edge Computing

Summary

References

Chapter 10 Oil and Gas

An Introduction to the Oil and Gas Industry

Defining Oil and Gas

The Oil and Gas Value Chain

Current Trends in the Oil and Gas Industry

Industry Key Challenges as Digitization Drivers

IoT and the Oil and Gas Industry

Improving Operational Efficiency

The Purdue Model for Control Hierarchy in Oil and Gas Networks

Oil and Gas Use Cases for IoT

The Connected Pipeline

The Connected Refinery

IoT Architectures for Oil and Gas

Control Room Networks for Oil and Gas

Wired Networks for Oil and Gas

Wireless Networks for Oil and Gas

Wireless Use Cases in the Oil and Gas Industry

Mobile Process Control Network Operator

Plant Turnaround

The Risk Control Framework for Cybersecurity in IoT

Securing the Oil and Gas PCN: Background

Securing the Oil and Gas PCN: Use Cases and Requirements

Real-Time Asset Inventory

Remote Access Control

Patch Management

Antivirus (AV) Management

Security Intelligence and Anomaly Detection

Data Analytics for Predictive Asset Monitoring

Summary

References

Chapter 11 Utilities

An Introduction to the Power Utility Industry

The IT/OT Divide in Utilities

The GridBlocks Reference Model

GridBlocks: An 11-Tiered Reference Architecture

The Primary Substation GridBlock and Substation Automation

SCADA

IEC 61850: The Modernization of Substation Communication Standards

IEC 61850 Station Bus

IEC 61850 Process Bus

Migration to IEC 61850

Network Resiliency Protocols in the Substation

Parallel Redundancy Protocol

High-Availability Seamless Redundancy

System Control GridBlock: The Substation WAN

Defining Teleprotection

Distance Protection

Current Differential (87L) Protection

Designing a WAN for Teleprotection

The Field Area Network (FAN) GridBlock

Advanced Metering Infrastructure

Other Use Cases

Demand Response

Distribution Automation

Securing the Smart Grid

NERC CIP

Smart Grid Security Considerations

The Future of the Smart Grid

Summary

References

Chapter 12 Smart and Connected Cities

An IoT Strategy for Smarter Cities

Vertical IoT Needs for Smarter Cities

Global vs. Siloed Strategies

Smart City IoT Architecture

Street Layer

City Layer

Data Center Layer

Services Layer

On-Premises vs. Cloud

Smart City Security Architecture

Smart City Use-Case Examples

Connected Street Lighting

Connected Street Lighting Solution

Street Lighting Architecture

Smart Parking

Smart Parking Use Cases

Smart Parking Architecture

Smart Traffic Control

Smart Traffic Control Architecture

Smart Traffic Applications

Connected Environment

The Need for a Connected Environment

Connected Environment Architecture

Summary

References

Chapter 13 Transportation

Transportation and Transports

Transportation Challenges

Roadways

Mass Transit

Rail

Challenges for Transportation Operators and Users

IoT Use Cases for Transportation

Connected Cars

Connected Fleets

Infrastructure and Mass Transit

An IoT Architecture for Transportation

IoT Technologies for Roadways

Bluetooth

Cellular/LTE

An Introduction to DSRC and WAVE

DSRC/WAVE Protocol and Architecture

Connected Roadways Network Architecture

Connected Fleet Architecture

Connected Roadways Security

Extending the Roadways IoT Architecture to Bus Mass Transit

Mass Transit Security

Extending Bus IoT Architecture to Railways

Connected Stations

Connected Train Security

Summary

References

Chapter 14 Mining

Mining Today and Its Challenges

Scale

Safety

Environment

Security

Volatile Markets

Challenges for IoT in Modern Mining

The OT Roles in Mining

Connectivity

An IoT Strategy for Mining

Improved Safety and Location Services

Driver Safety

Weather and Lightning

Slope Monitoring

Location Services

Hazardous Gas Detection

Environmental Monitoring

Improved Efficiencies

Improved Collaboration

IoT Security for Mining

An Architecture for IoT in Mining

IEEE 802.11 as the IoT Access Layer

802.11 Outdoor Wireless Mesh

802.11 Wireless Mesh Backhaul Considerations

Wi-Fi Clients

Antenna Considerations for Wireless Mesh

4G/LTE

Wireless in Underground Mining

Industrial Wireless

Isolated vs. Connected Mine Networks

Core Network Connectivity

Network Design Consideration for Mining Applications

Data Processing

Summary

Chapter 15 Public Safety

Overview of Public Safety

Public Safety Objects and Exchanges

Public and Private Partnership for Public Safety IoT

Public Safety Adoption of Technology and the IoT

An IoT Blueprint for Public Safety

Mission Continuum

Mission Fabric

Inter-agency Collaboration

Emergency Response IoT Architecture

Mobile Command Center

Network and Security Services

Compute and Applications Services

Mobile Vehicles: Land, Air, and Sea

Network and Security Services

Compute and Applications Services

IoT Public Safety Information Processing

School Bus Safety

Bus Location and Student Onboarding/Offboarding

Driver Behavior Reporting

Diagnostic Reporting

Video Surveillance

Student Wi-Fi

Push-to-Talk Communication

School Bus Safety Network Architecture

Summary

Reference

Index

