
ANALYSIS, SYNTHESIS, AND DESIGN OF CHEMICAL PROCESSES

FIFTH EDITION

RICHARD TURTON | JOSEPH A. SHAEIWITZ DEBANGSU BHATTACHARYYA | WALLACE B. WHITING

Analysis, Synthesis, and Design of Chemical Processes

Fifth Edition

Analysis, Synthesis and Design of Chemical Processes

Table of Contents

(`	\cap	١/	۵	r

Half Title

Title Page

Copyright Page

Contents

Preface

About the Authors

List of Nomenclature

Chapter 0 Outcomes Assessment

- 0.1 Student Self-Assessment
- 0.2 Assessment by Faculty
- 0.3 Summary

References

SECTION I: Conceptualization and Analysis of Chemical Processes

Chapter 1 Diagrams for Understanding Chemical Processes

- 1.1 Block Flow Diagram (BFD)
 - 1.1.1 Block Flow Process Diagram
 - 1.1.2 Block Flow Plant Diagram
- 1.2 Process Flow Diagram (PFD)
 - 1.2.1 Process Topology
 - 1.2.2 Stream Information
 - 1.2.3 Equipment Information
 - 1.2.4 Combining Topology, Stream Data, and Control Strategy to Give a PFD
- 1.3 Piping and Instrumentation Diagram (P&ID)
- 1.4 Additional Diagrams
- 1.5 Three-Dimensional Representation of a Process

- 1.6 The 3-D Plant Model
- 1.7 Operator and 3-D Immersive Training Simulators
 - 1.7.1 Operator Training Simulators (OTS)
 - 1.7.2 3-D Immersive Training Simulators (ITS)
 - 1.7.3 Linking the ITS with an OTS
- 1.8 Summary

References

Short Answer Questions

Problems

Chapter 2 The Structure and Synthesis of Process Flow Diagrams

- 2.1 Hierarchy of Process Design
- 2.2 Step 1Batch versus Continuous Process
- 2.3 Step 2The Input/Output Structure of the Process
 - 2.3.1 Process Concept Diagram
 - 2.3.2 The Input/Output Structure of the Process Flow Diagram
 - 2.3.3 The Input/Output Structure and Other Features of the Generic Block Flow Process Diagram
 - 2.3.4 Other Considerations for the Input/Output Structure of the Process Flowsheet
 - 2.3.5 What Information Can Be Determined Using the Input/Output Diagram for a Process?
- 2.4 Step 3The Recycle Structure of the Process
 - 2.4.1 Efficiency of Raw Material Usage
 - 2.4.2 Identification and Definition of the Recycle Structure of the Process
 - 2.4.3 Other Issues Affecting the Recycle Structure That Lead to Process Alternatives
- 2.5 Step 4General Structure of the Separation System
- 2.6 Step 5Heat-Exchanger Network or Process Energy Recovery System
- 2.7 Information Required and Sources
- 2.8 Summary

References

Short Answer Questions

Problems

Chapter 3 Batch Processing

- 3.1 Design Calculations for Batch Processes
- 3.2 Gantt Charts and Scheduling
- 3.3 Nonoverlapping Operations, Overlapping Operations, and Cycle Times
- 3.4 Flowshop and Jobshop Plants

- 3.4.1 Flowshop Plants
- 3.4.2 Jobshop Plants
- 3.5 Product and Intermediate Storage and Parallel Process Units
 - 3.5.1 Product Storage for Single-Product Campaigns
 - 3.5.2 Intermediate Storage
 - 3.5.3 Parallel Process Units
- 3.6 Design of Equipment for Multiproduct Batch Processes
- 3.7 Summary

References

Short Answer Questions

Problems

Chapter 4 Chemical Product Design

- 4.1 Strategies for Chemical Product Design
- 4.2 Needs
- 4.3 Ideas
- 4.4 Selection
- 4.5 Manufacture
- 4.6 Batch Processing
- 4.7 Economic Considerations
- 4.8 Summary

References

Chapter 5 Tracing Chemicals through the Process Flow Diagram

- 5.1 Guidelines and Tactics for Tracing Chemicals
- 5.2 Tracing Primary Paths Taken by Chemicals in a Chemical Process
- 5.3 Recycle and Bypass Streams
- 5.4 Tracing Nonreacting Chemicals
- 5.5 Limitations
- 5.6 Written Process Description
- 5.7 Summary

Problems

Chapter 6 Understanding Process Conditions

- 6.1 Conditions of Special Concern for the Operation of Separation and Reactor Systems
 - 6.1.1 Pressure

- 6.1.2 Temperature
- 6.2 Reasons for Operating at Conditions of Special Concern
- 6.3 Conditions of Special Concern for the Operation of Other Equipment
- 6.4 Analysis of Important Process Conditions
 - 6.4.1 Evaluation of Reactor R-101
 - 6.4.2 Evaluation of High-Pressure Phase Separator V-102
 - 6.4.3 Evaluation of Large Temperature Driving Force in Exchanger E-101
 - 6.4.4 Evaluation of Exchanger E-102
 - 6.4.5 Pressure Control Valve on Stream 8
 - 6.4.6 Pressure Control Valve on Stream from V-102 to V-103
- 6.5 Summary

References

Short Answer Questions

Problems

SECTION II: Engineering Economic Analysis of Chemical Processes

Chapter 7 Estimation of Capital Costs

- 7.1 Classifications of Capital Cost Estimates
- 7.2 Estimation of Purchased Equipment Costs
 - 7.2.1 Effect of Capacity on Purchased Equipment Cost
 - 7.2.2 Effect of Time on Purchased Equipment Cost
- 7.3 Estimating the Total Capital Cost of a Plant
 - 7.3.1 Lang Factor Technique
 - 7.3.2 Module Costing Technique
 - 7.3.3 Bare Module Cost for Equipment at Base Conditions
 - 7.3.4 Bare Module Cost for Non-Base-Case Conditions
 - 7.3.5 Combination of Pressure and MOC Information to Give the Bare Module Factor, F, and Bare Module Cost, C
 - 7.3.6 Algorithm for Calculating Bare Module Costs
 - 7.3.7 Grassroots (Green Field) and Total Module Costs
 - 7.3.8 A Computer Program (CAPCOST) for Capital Cost Estimation Using the Equipment Module

 Approach
- 7.4 Estimation of Plant Costs Based on Capacity Information
- 7.5 Summary

References

Short Answer Questions

Problems

Chapter 8 Estimation of Manufacturing Costs

- 8.1 Factors Affecting the Cost of Manufacturing a Chemical Product
- 8.2 Cost of Operating Labor
- 8.3 Utility Costs
 - 8.3.1 Background Information on Utilities
 - 8.3.2 Calculation of Utility Costs
- 8.4 Raw Material Costs
- 8.5 Yearly Costs and Stream Factors
- 8.6 Estimating Utility Costs from the PFD
- 8.7 Cost of Treating Liquid and Solid Waste Streams
- 8.8 Evaluation of Cost of Manufacture for the Production of Benzene via the Hydrodealkylation of Toluene
- 8.9 Summary
- References
- **Short Answer Questions**
- **Problems**

Chapter 9 Engineering Economic Analysis

- 9.1 Investments and the Time Value of Money
- 9.2 Different Types of Interest
 - 9.2.1 Simple Interest
 - 9.2.2 Compound Interest
 - 9.2.3 Interest Rates Changing with Time
- 9.3 Time Basis for Compound Interest Calculations
 - 9.3.1 Effective Annual Interest Rate
 - 9.3.2 Continuously Compounded Interest
- 9.4 Cash Flow Diagrams
 - 9.4.1 Discrete Cash Flow Diagram
 - 9.4.2 Cumulative Cash Flow Diagram
- 9.5 Calculations from Cash Flow Diagrams
 - 9.5.1 Annuities A Uniform Series of Cash Transactions
 - 9.5.2 Discount Factors
- 9.6 Inflation
- 9.7 Depreciation of Capital Investment

- 9.7.1 Fixed Capital, Working Capital, and Land
- 9.7.2 Different Types of Depreciation
- 9.7.3 Current Depreciation Method (2017): Modified Accelerated Cost Recovery System (MACRS)
- 9.8 Taxation, Cash Flow, and Profit
- 9.9 Summary
- References
- Short Answer Questions
- **Problems**

Chapter 10 Profitability Analysis

- 10.1 A Typical Cash Flow Diagram for a New Project
- 10.2 Profitability Criteria for Project Evaluation
 - 10.2.1 Nondiscounted Profitability Criteria
 - 10.2.2 Discounted Profitability Criteria
- 10.3 Comparing Several Large Projects: Incremental Economic Analysis
- 10.4 Establishing Acceptable Returns from Investments: The Concept of Risk
- 10.5 Evaluation of Equipment Alternatives
 - 10.5.1 Equipment with the Same Expected Operating Lives
 - 10.5.2 Equipment with Different Expected Operating Lives
- 10.6 Incremental Analysis for Retrofitting Facilities
 - 10.6.1 Nondiscounted Methods for Incremental Analysis
 - 10.6.2 Discounted Methods for Incremental Analysis
- 10.7 Evaluation of Risk in Evaluating Profitability
 - 10.7.1 Forecasting Uncertainty in Chemical Processes
 - 10.7.2 Quantifying Risk
- 10.8 Profit Margin Analysis
- 10.9 Summary
- References
- **Short Answer Questions**
- **Problems**

SECTION III: Synthesis and Optimization of Chemical Processes

- Chapter 11 Utilizing Experience-Based Principles to Confirm the Suitability of a Process Design
 - 11.1 The Role of Experience in the Design Process
 - 11.1.1 Introduction to Technical Heuristics and Shortcut Methods

- 11.1.2 Maximizing the Benefits Obtained from Experience
- 11.2 Presentation of Tables of Technical Heuristics and Guidelines
- 11.3 Summary

List of Informational Tables

References

Problems

Chapter 12 Synthesis of the PFD from the Generic BFD

- 12.1 Information Needs and Sources
 - 12.1.1 Interactions with Other Engineers and Scientists
 - 12.1.2 Reaction Kinetics Data
 - 12.1.3 Physical Property Data
- 12.2 Reactor Section
- 12.3 Separator Section
 - 12.3.1 General Guidelines for Choosing Separation Operations
 - 12.3.2 Sequencing of Distillation Columns for Simple Distillation
 - 12.3.3 Azeotropic Distillation
- 12.4 Reactor Feed Preparation and Separator Feed Preparation Sections
- 12.5 Recycle Section
- 12.6 Environmental Control Section
- 12.7 Major Process Control Loops
- 12.8 Flow Summary Table
- 12.9 Major Equipment Summary Table
- 12.10 Summary

References

General Reference

Problems

Chapter 13 Synthesis of a Process Using a Simulator and Simulator Troubleshooting

- 13.1 The Structure of a Process Simulator
- 13.2 Information Required to Complete a Process Simulation: Input Data
 - 13.2.1 Selection of Chemical Components
 - 13.2.2 Selection of Physical Property Models
 - 13.2.3 Selection and Input of Flowsheet Topology
 - 13.2.4 Selection of Feed Stream Properties

- 13.2.5 Selection of Equipment Parameters
- 13.2.6 Selection of Output Display Options
- 13.2.7 Selection of Convergence Criteria and Running a Simulation
- 13.2.8 Common Errors in Using Simulators
- 13.3 Handling Recycle Streams
- 13.4 Choosing Thermodynamic Models
 - 13.4.1 Pure-Component Properties
 - 13.4.2 Enthalpy
 - 13.4.3 Phase Equilibria
 - 13.4.4 Using Thermodynamic Models
- 13.5 Case Study: Toluene Hydrodealkylation Process
- 13.6 Electrolyte Systems Modeling
 - 13.6.1 Fundamentals of Modeling Electrolyte Systems
 - 13.6.2 Steps Needed to Build the Model of an Aqueous Electrolyte System and the Estimation of Parameters
- 13.7 Solids Modeling
 - 13.7.1 Physical Properties
 - 13.7.2 Parameter Requirements for Solids Model
- Appendix 13.1

Calculation of Excess Gibbs Energy for Electrolyte Systems

Appendix 13.2

Steps to Build a Model of a Distillation Column for an Electrolyte System Using a
Rate-Based Simulation with a Film Model for Mass Transfer, the Parameters Required
at Each Stage, and Possible Sources of These Parameters

13.8 Summary

References

Short Answer Questions

Problems

Chapter 14 Process Optimization

- 14.1 Background Information on Optimization
 - 14.1.1 Common Misconceptions
 - 14.1.2 Estimating Problem Difficulty
 - 14.1.3 Top-Down and Bottom-Up Strategies
 - 14.1.4 Communication of Optimization Results
- 14.2 Strategies

- 14.2.1 Base Case
- 14.2.2 Objective Functions
- 14.2.3 Analysis of the Base Costs
- 14.2.4 Identifying and Prioritizing Key Decision Variables

14.3 Topological Optimization

- 14.3.1 Introduction
- 14.3.2 Elimination of Unwanted Nonhazardous By-Products or Hazardous Waste Streams
- 14.3.3 Elimination and Rearrangement of Equipment
- 14.3.4 Alternative Separation Schemes and Reactor Configurations

14.4 Parametric Optimization

- 14.4.1 Single-Variable Optimization: A Case Study on T-201, the DME Separation Column
- 14.4.2 Two-Variable Optimization: The Effect of Pressure and Reflux Ratio on T-201, the DME Separation Column
- 14.4.3 Flowsheet Optimization Using Key Decision Variables
- 14.5 Lattice Search, Response Surface, and Mathematical Optimization Techniques
- 14.6 Process Flexibility and the Sensitivity of the Optimum
- 14.7 Optimization in Batch Systems
 - 14.7.1 Problem of Scheduling Equipment
 - 14.7.2 Problem of Optimum Cycle Time
- 14.8 Summary

References

Short Answer Questions

Problems

Chapter 15 Pinch Technology

- 15.1 Introduction
- 15.2 Heat Integration and Network Design
- 15.3 Composite Temperature-Enthalpy Diagram
- 15.4 Composite Enthalpy Curves for Systems without a Pinch
- 15.5 Using the Composite Enthalpy Curve to Estimate Heat-Exchanger Surface Area
- 15.6 Effectiveness Factor (F) and the Number of Shells
- 15.7 Combining Costs to Give the EAOC for the Network
- 15.8 Other Considerations
 - 15.8.1 Materials of Construction and Operating Pressure Issues
 - 15.8.2 Problems with Multiple Utilities
 - 15.8.3 Handling Streams with Phase Changes

- 15.9 Heat-Exchanger Network Synthesis Analysis and Design (HENSAD) Program
 15.10 Mass-Exchange Networks
 15.11 Summary
- References
- **Short Answer Questions**
- **Problems**

Chapter 16 Advanced Topics Using Steady-State Simulators

- 16.1 Why the Need for Advanced Topics in Steady-State Simulation?
- 16.2 User-Added Models
 - 16.2.1 Unit Operation Models
 - 16.2.2 User Thermodynamic and Transport Models
 - 16.2.3 User Kinetic Models
- 16.3 Solution Strategy for Steady-State Simulations
 - 16.3.1 Sequential Modular (SM)
 - 16.3.2 Equation-Oriented (EO)
 - 16.3.3 Simultaneous Modular (SMod)
- 16.4 Studies with the Steady-State Simulation
 - 16.4.1 Sensitivity Studies
 - 16.4.2 Optimization Studies
- 16.5 Estimation of Physical Property Parameters
- 16.6 Summary
- References
- **Short Answer Questions**
- **Problems**

Chapter 17 Using Dynamic Simulators in Process Design

- 17.1 Why Is There a Need for Dynamic Simulation?
- 17.2 Setting Up a Dynamic Simulation
 - 17.2.1 Step 1: Topological Change in the Steady-State Simulation
 - 17.2.2 Step 2: Equipment Geometry and Size
 - 17.2.3 Step 3: Additional Dynamic Data/Dynamic Specification
- 17.3 Dynamic Simulation Solution Methods
 - 17.3.1 Initialization
 - 17.3.2 Solution of the DAE System
- 17.4 Process Control

17.5 Summary
References
Short Answer Questions
Problems
Chapter 18 Regulation and Control of Chemical Processes with
Applications Using Commercial Software
18.1 A Simple Regulation Problem
18.2 The Characteristics of Regulating Valves
18.3 Regulating Flowrates and Pressures
18.4 The Measurement of Process Variables
18.5 Common Control Strategies Used in Chemical Processes
18.5.1 Feedback Control and Regulation
18.5.2 Feed-Forward Control and Regulation
18.5.3 Combination Feedback and Feed-Forward Control
18.5.4 Cascade Regulation
18.5.5 Ratio Control
18.5.6 Split-Range Control
18.6 Exchanging Heat and Work between Process and Utility Streams
18.6.1 Increasing the Pressure of a Process Stream and Regulating Its Flowrate
18.6.2 Exchanging Heat between Process Streams and Utilities
18.6.3 Exchanging Heat between Process Streams
18.7 Logic Control
18.8 Advanced Process Control
18.8.1 Statistical Process Control (SPC)
18.8.2 Model-Based Control
18.9 Case Studies
18.9.1 The Cumene Reactor, R-801
18.9.2 A Basic Control System for a Binary Distillation Column
18.9.3 A More Sophisticated Control System for a Binary Distillation Column
18.10 Putting It All Together: The Operator Training Simulator (OTS)

SECTION IV: Chemical Equipment Design and Performance Process

18.11 Summary References Problems

Equipment Design and Performance

Chapter 19 Process Fluid Mechanics

- 19.1 Basic Relationships in Fluid Mechanics
 - 19.1.1 Mass Balance
 - 19.1.2 Mechanical Energy Balance
 - 19.1.3 Force Balance
- 19.2 Fluid Flow Equipment
 - 19.2.1 Pipes
 - 19.2.2 Valves
 - 19.2.3 Pumps
 - 19.2.4 Compressors

19.3 Frictional Pipe Flow

- 19.3.1 Calculating Frictional Losses
- 19.3.2 Incompressible Flow
- 19.3.3 Compressible Flow
- 19.3.4 Choked Flow

19.4 Other Flow Situations

- 19.4.1 Flow Past Submerged Objects
- 19.4.2 Fluidized Beds
- 19.4.3 Flowrate Measurement

19.5 Performance of Fluid Flow Equipment

- 19.5.1 Base-Case Ratios
- 19.5.2 Net Positive Suction Head
- 19.5.3 Pump and System Curves
- 19.5.4 Compressors
- 19.5.5 Performance of the Feed Section to a Process

References

Short Answer Questions

Problems

Chapter 20 Process Heat Transfer

20.1 Basic Heat-Exchanger Relationships

- 20.1.1 Countercurrent Flow
- 20.1.2 Cocurrent Flow
- 20.1.3 Streams with Phase Changes
- 20.1.4 Nonlinear Q versus T Curves
- 20.1.5 Overall Heat Transfer Coefficient, U, Varies along the Exchanger

20.2 Heat-Exchange Equipment Design and Characteristics

20.2.1 Shell-and-Tube Heat Exchangers

20.3 LMTD Correction Factor for Multiple Shell and Tube Passes

- 20.3.1 Background
- 20.3.2 Basic Configuration of a Single-Shell-Pass, Double-Tube-Pass (12) Exchanger
- 20.3.3 Multiple Shell-and-Tube-Pass Exchangers
- 20.3.4 Cross-Flow Exchangers
- 20.3.5 LMTD Correction and Phase Change

20.4 Overall Heat Transfer CoefficientsResistances in Series

20.5 Estimation of Individual Heat Transfer Coefficients and Fouling Resistances

- 20.5.1 Heat Transfer Resistances Due to Fouling
- 20.5.2 Thermal Conductivities of Common Metals and Tube Properties
- 20.5.3 Correlations for Film Heat Transfer Coefficients

20.6 Extended Surfaces

- 20.6.1 Rectangular Fin with Constant Thickness
- 20.6.2 Fin Efficiency for Other Fin Geometries
- 20.6.3 Total Heat Transfer Surface Effectiveness

20.7 Algorithm and Worked Examples for the Design of Heat Exchangers

- 20.7.1 Pressure Drop Considerations
- 20.7.2 Design Algorithm

20.8 Performance Problems

- 20.8.1 What Variables to Specify in Performance Problems
- 20.8.2 Using Ratios to Determine Heat-Exchanger Performance
- 20.8.3 Worked Examples for Performance Problems

References

Appendix 20.A: Heat-Exchanger Effectiveness Charts

Appendix 20.B: Derivation of Fin Effectiveness for a Rectangular Fin

Short Answer Questions

Problems

Chapter 21 Separation Equipment

21.1 Basic Relationships in Separations

- 21.1.1 Mass Balances
- 21.1.2 Energy Balances
- 21.1.3 Equilibrium Relationships
- 21.1.4 Mass Transfer Relationships
- 21.1.5 Rate Expressions

21.2 Illustrative Diagrams

- 21.2.1 TP-xy Diagrams
- 21.2.2 McCabe-Thiele Diagram
- 21.2.3 Dilute SolutionsThe Kremser and Colburn Methods

21.3 Equipment

- 21.3.1 Drums
- 21.3.2 Tray Towers
- 21.3.3 Packed Towers
- 21.3.4 Tray Tower or Packed Tower?
- 21.3.5 Performance of Packed and Tray Towers

Case Study

21.4 Extraction Equipment

- 21.4.1 Mixer-Settlers
- 21.4.2 Static and Pulsed Columns
- 21.4.3 Agitated Columns
- 21.4.4 Centrifugal Extractors

21.5 Gas Permeation Membrane Separations

- 21.5.1 Equipment
- 21.5.2 Models for Gas Permeation Membranes
- 21.5.3 Practical Issues

References

Short Answer Questions

Problems

Chapter 22 Reactors

22.1 Basic Relationships

- 22.1.1 Kinetics
- 22.1.2 Equilibrium
- 22.1.3 Additional Mass Transfer Effects
- 22.1.4 Mass Balances
- 22.1.5 Energy Balances
- 22.1.6 Reactor Models

22.2 Equipment Design for Nonisothermal Conditions

- 22.2.1 Nonisothermal Continuous Stirred Tank Reactor
- 22.2.2 Nonisothermal Plug Flow Reactor
- 22.2.3 Fluidized Bed Reactor
- 22.3 Performance Problems

- 22.3.1 Ratios for Simple Cases
- 22.3.2 More Complex Examples

References

Short Answer Questions

Problems

Chapter 23 Other Equipment

23.1 Pressure Vessels

- 23.1.1 Material Properties
- 23.1.2 Basic Design Equations

23.2 Knockout Drums or Simple Phase Separators

- 23.2.1 Vapor-Liquid (V-L) Separation
- 23.2.2 Design of Vertical V-L Separators
- 23.2.3 Design of Horizontal V-L Separators
- 23.2.4 Mist Eliminators and Other Internals
- 23.2.5 Liquid-Liquid (L-L) Separation

23.3 Steam Ejectors

- 23.3.1 Estimating Air Leaks into Vacuum Systems and the Load for Steam Ejectors
- 23.3.2 Single-Stage Steam Ejectors
- 23.3.3 Multistage Steam Ejectors
- 23.3.4 Performance of Steam Ejectors

References

Short Answer Questions

Problems

Chapter 24 Process Troubleshooting and Debottlenecking

24.1 Recommended Methodology

- 24.1.1 Elements of Problem-Solving Strategies
- 24.1.2 Application to Troubleshooting Problems

24.2 Troubleshooting Individual Units

- 24.2.1 Troubleshooting a Packed-Bed Absorber
- 24.2.2 Troubleshooting the Cumene Process Feed Section

24.3 Troubleshooting Multiple Units

- 24.3.1 Troubleshooting Off-Specification Acrylic Acid Product
- 24.3.2 Troubleshooting Steam Release in Cumene Reactor
- 24.4 A Process Troubleshooting Problem
- 24.5 Debottlenecking Problems

24.6 Summary

References Problems

SECTION V: The Impact of Chemical Engineering Design on Society

Chapter 25 Ethics and Professionalism

25.1 Ethics

- 25.1.1 Moral Autonomy
- 25.1.2 Rehearsal
- 25.1.3 Reflection in Action
- 25.1.4 Mobile Truth
- 25.1.5 Nonprofessional Responsibilities
- 25.1.6 Duties and Obligations
- 25.1.7 Codes of Ethics
- 25.1.8 Whistle-Blowing [12]
- 25.1.9 Ethical Dilemmas
- 25.1.10 Additional Ethics Heuristics
- 25.1.11 Other Resources

25.2 Professional Registration

- 25.2.1 Engineer-in-Training
- 25.2.2 Registered Professional Engineer
- 25.3 Legal Liability [13]
- 25.4 Business Codes of Conduct [14, 15]
- 25.5 Summary

References

Problems

Chapter 26 Health, Safety, and the Environment

26.1 Risk Assessment

- 26.1.1 Accident Statistics
- 26.1.2 Worst-Case Scenarios
- 26.1.3 The Role of the Chemical Engineer

26.2 Regulations and Agencies

- 26.2.1 OSHA and NIOSH
- 26.2.2 Environmental Protection Agency (EPA)
- 26.2.3 Nongovernmental Organizations
- 26.3 Fires and Explosions

- 26.3.1 Terminology
- 26.3.2 Pressure-Relief Systems
- 26.4 Process Hazard Analysis
 - 26.4.1 HAZOP (Hazard and Operability Study)
 - 26.4.2 Dow Fire & Explosion Index and Chemical Exposure Index
- 26.5 Chemical Safety and Hazard Investigation Board
- 26.6 Inherently Safe Design
- 26.7 Summary
- 26.8 Glossary
- References
- **Problems**

Chapter 27 Green Engineering

- 27.1 Environmental Regulations
- 27.2 Environmental Fate of Chemicals
- 27.3 Green Chemistry
- 27.4 Pollution Prevention during Process Design
- 27.5 Analysis of a PFD for Pollution Performance and Environmental Performance
- 27.6 An Example of the Economics of Pollution Prevention
- 27.7 Life Cycle Analysis
- 27.8 Summary
- References
- **Problems**

SECTION VI: Interpersonal and Communication Skills

Chapter 28 Teamwork

- 28.1 Groups
 - 28.1.1 Characteristics of Effective Groups
 - 28.1.2 Assessing and Improving the Effectiveness of a Group
 - 28.1.3 Organizational Behaviors and Strategies
- 28.2 Group Evolution
 - 28.2.1 Forming
 - 28.2.2 Storming
 - 28.2.3 Norming
 - 28.2.4 Performing
- 28.3 Teams and Teamwork

- 28.3.1 When Groups Become Teams
- 28.3.2 Unique Characteristics of Teams

28.4 Misconceptions

- 28.4.1 Team Exams
- 28.4.2 Overreliance on Team Members
- 28.5 Learning in Teams
- 28.6 Other Reading
- 28.7 Summary
- References
- **Problems**

Chapter 29 Written and Oral Communication

- 29.1 Audience Analysis
- 29.2 Written Communication
 - 29.2.1 Design Reports
 - 29.2.2 Transmittal Letters or Memos
 - 29.2.3 Executive Summaries and Abstracts
 - 29.2.4 Other Types of Written Communication
 - 29.2.5 Exhibits (Figures and Tables)
 - 29.2.6 References
 - 29.2.7 Strategies for Writing
 - 29.2.8 WVU and Auburn University Guidelines for Written Design Reports

29.3 Oral Communication

- 29.3.1 Formal Oral Presentations
- 29.3.2 Briefings
- 29.3.3 Visual Aids
- 29.3.4 WVU and Auburn University Oral Presentation Guidelines

29.4 Software and Author Responsibility

- 29.4.1 Spell Checkers
- 29.4.2 Thesaurus
- 29.4.3 Grammar Checkers
- 29.4.4 Graphs
- 29.4.5 Tables
- 29.4.6 Colors and Exotic Features
- 29.4.7 Raw Output from Process Simulators
- 29.5 Summary
- References

Problems

Chapter 30 A Report-Writing Case Study

- 30.1 The Assignment Memorandum
- 30.2 Response Memorandum
- 30.3 Visual Aids
- 30.4 Example Reports
 - 30.4.1 An Example of a Portion of a Student Written Report
 - 30.4.2 An Example of an Improved Student Written Report
- 30.5 Checklist of Common Mistakes and Errors
 - 30.5.1 Common Mistakes for Visual Aids
 - 30.5.2 Common Mistakes for Written Text

Appendix A: Cost Equations and Curves for the CAPCOST Program

- A.1 Purchased Equipment Costs
- A.2 Pressure Factors
 - A.2.1 Pressure Factors for Process Vessels
 - A.2.2 Pressure Factors for Other Process Equipment
- A.3 Material Factors and Bare Module Factors
 - A.3.1 Bare Module and Material Factors for Heat Exchangers, Process Vessels, and Pumps
 - A.3.2 Bare Module and Material Factors for the Remaining Process Equipment

References

Appendix B: Information for the Preliminary Design of Fifteen Chemical Processes

- B.1 Dimethyl Ether (DME) Production, Unit 200
 - **B.1.1 Process Description**
 - **B.1.2 Reaction Kinetics**
 - B.1.3 Simulation (CHEMCAD) Hints
 - **B.1.4 References**
- B.2 Ethylbenzene Production, Unit 300
 - B.2.1 Process Description [1, 2]
 - **B.2.2 Reaction Kinetics**
 - B.2.3 Simulation (CHEMCAD) Hints

- **B.2.4 References**
- B.3 Styrene Production, Unit 400
 - B.3.1 Process Description [1, 2]
 - **B.3.2 Reaction Kinetics**
 - B.3.3 Simulation (CHEMCAD) Hints
 - **B.3.4 References**
- B.4 Drying Oil Production, Unit 500
 - **B.4.1 Process Description**
 - **B.4.2 Reaction Kinetics**
 - B.4.3 Simulation (CHEMCAD) Hints
 - B.4.4 Reference
- B.5 Production of Maleic Anhydride from Benzene, Unit 600
 - **B.5.1 Process Description**
 - **B.5.2 Reaction Kinetics**
 - B.5.3 Simulation (CHEMCAD) Hints
 - **B.5.4 References**
- B.6 Ethylene Oxide Production, Unit 700
 - B.6.1 Process Description [1, 2]
 - **B.6.2 Reaction Kinetics**
 - B.6.3 Simulation (CHEMCAD) Hints
 - **B.6.4 References**
- B.7 Formalin Production, Unit 800
 - B.7.1 Process Description [1, 2]
 - **B.7.2 Reaction Kinetics**
 - B.7.3 Simulation (CHEMCAD) Hints
 - **B.7.4 References**
- B.8 Batch Production of L-Phenylalanine and L-Aspartic Acid, Unit 900
 - **B.8.1 Process Description**
 - **B.8.2 Reaction Kinetics**
 - **B.8.3 References**
- B.9 Acrylic Acid Production via The Catalytic Partial Oxidation of Propylene [15], Unit 1000

- **B.9.1 Process Description**
- B.9.2 Reaction Kinetics and Reactor Configuration
- B.9.3 Simulation (CHEMCAD) Hints
- **B.9.4 References**
- B.10 Production of Acetone via the Dehydrogenation of Isopropyl Alcohol (IPA)

[14], Unit 1100

- **B.10.1 Process Description**
- **B.10.2 Reaction Kinetics**
- B.10.3 Simulation (CHEMCAD) Hints
- B.10.4 References
- B.11 Production of Heptenes from Propylene and Butenes [1], Unit 1200
 - **B.11.1 Process Description**
 - **B.11.2 Reaction Kinetics**
 - B.11.3 Simulation (CHEMCAD) Hints
 - B.11.4 Reference
- B.12 Design of a Shift Reactor Unit to Convert CO to CO, Unit 1300
 - **B.12.1 Process Description**
 - **B.12.2 Reaction Kinetics**
 - B.12.3 Simulation (Aspen Plus) Hints
 - B.12.4 Reference
- B.13 Design of a Dual-Stage Selexol Unit to Remove CO[sub(2)] and H[sub(2)]S From Coal-Derived Synthesis Gas, Unit 1400
 - **B.13.1 Process Description**
 - B.13.2 Simulation (Aspen Plus) Hints
 - B.13.3 References
- B.14 Design of a Claus Unit for the Conversion of H[sub(2)]S to Elemental Sulfur, Unit 1500
 - **B.14.1 Process Description**
 - **B.14.2 Reaction Kinetics**
 - B.14.3 Simulation (Aspen Plus) Hints
 - B.14.4 References
- B.15 Modeling a Downward-Flow, Oxygen-Blown, Entrained-Flow Gasifier,

U	!	•	4	\sim	\sim	-
1 1	n	ΙŤ	- 1	n	ı١	•
\mathbf{c}		IL.		u	v	L

- **B.15.1 Process Description**
- **B.15.2 Reaction Kinetics**
- B.15.3 Simulation (Aspen Plus) Hints
- B.15.4 References

Appendix C: Design Projects

Project 1 Increasing the Production of 3-Chloro-1-Propene (Allyl Chloride) in Unit 600

- C.1.1 Background
- C.1.2 Process Description of the Beaumont Allyl Chloride Facility
- C.1.3 Specific Objectives of Assignment
- C.1.4 Additional Background Information
- C.1.5 Process Design Calculations

Fluidized-Bed Reactor, R-601

Reference

Project 2 Design and Optimization of a New 20,000-Metric-Tons-per-Year Facility to Produce Allyl Chloride at La Nueva Cantina, Mexico

- C.2.1 Background
- C.2.2 Assignment
- C.2.3 Problem-Solving Methodology
- C.2.4 Process Information

Project 3 Scale-Down of Phthalic Anhydride Production at TBWS Unit 700

- C.3.1 Background
- C.3.2 Phthalic Anhydride Production
- C.3.3 Other Information
- C.3.4 Assignment
- C.3.5 Report Format

Project 4 The Design of a New 100,000-Metric-Tons-per-Year Phthalic Anhydride Production Facility

- C.4.1 Background
- C.4.2 Other Information
- C.4.3 Assignment
- C.4.4 Report Format

Project 5 Problems at the Cumene Production Facility, Unit 800

- C.5.1 Background
- C.5.2 Cumene Production Reactions
- C.5.3 Process Description
- C.5.4 Recent Problems in Unit 800
- C.5.5 Other Information
- C.5.6 Assignment
- C.5.7 Report Format
- C.5.8 Process Calculations

Calculations for Fuel Gas Exit Line for V-802

Calculations for P-801

Vapor Pressure of Stream 3

Calculations for P-802

Project 6 Design of a New, 100,000-Metric-Tons-per-Year Cumene Production Facility

- C.6.1 Background
- C.6.2 Assignment
- C.6.3 Report Format

Index