The Economics of Software Quality

Capers Jones
Olivier Bonsignour

Foreword by Thaddeus Arroyo
Chief Information Officer, AT&T Services, Inc.
Praise for *The Economics of Software Quality*

“This book provides the best treatment on the subject of economics of software quality that I’ve seen. Peppered with valuable industry data, in-depth analysis, empirical methods for quality improvement, and economic analysis of quality, this book is a must-read for anyone who is interested in this subject. With the many real-life and up-to-date examples and stories linking software quality to daily-life activities, readers will find this book an enjoyable read.”

—Stephen H. Kan, Senior Technical Staff Member and Program Manager, Software Quality—IBM Systems and Technology Group, and author of *Metrics* and Models in Software Quality Engineering

“Finally, a book that defines the cost and economics of software quality and their relationship to business value. Facts such as the inability of testing alone to produce quality software, the value of engineering-in quality, and the positive ROI are illustrated in compelling ways. Additionally, this book is a must-read for understanding, managing, and eliminating ‘technical debt’ from software systems.”

—Dan Galorath, CEO, Galorath Incorporated & SEER by Galorath

“Congrats to Capers and Olivier as they release their relevant, extensive, and timely research on the costs of defects in today’s software industry. The authors don’t stop with the causes of defects; they explore injection points, removal, and prevention approaches to avoid the ‘technical mortgage’ associated with defective software products. In today’s ‘quick-to-market’ world, an emphasis on strengthening the engineering in software engineering is refreshing. If you’re a software developer, manager, student, or user, this book will challenge your perspective on software quality. Many thanks!”

—Joe Schofield, Sandia National Laboratories; Vice President, IFPUG; CQA, CFPS, CSMS, LSS BB, SEI-certified instructor

“Whether consulting, working on projects, or teaching, whenever I need credible, detailed, relevant metrics and insights into the current capabilities and performance of the software engineering profession, I always turn to Capers Jones’s work first. In this important new book, he and Olivier Bonsignour make
Table of Contents

Contents
Foreword
Preface
Acknowledgments
About the Authors
Chapter 1: Defining Software Quality and Economic Value
 Introduction
 Why Is Software Quality Important?
 Defining Software Quality
 Defining Economic Value and Defining the Value of Software Quality
 The Economic Value of Software and Quality to Enterprises that Build Internal Software for Their Own Use
 The Economic Value of Software and Quality to Internal Software Users
 The Economic Value of Software and Quality to Commercial Software Vendors
 The Economic Value of Software and Quality to COTS Users and Customers
 The Economic Value of Software and Quality to Embedded Software Companies
 The Economic Value of Software and Quality to Embedded Equipment Users
Table of Contents

The Economic Value of Software and Software Quality to Other Business Sectors
Multiple Roles Occurring Simultaneously
Summary and Conclusions
Chapter 2: Estimating and Measuring Software Quality
Introduction
Using Function Point Metrics for Defect Potentials
Software Defect Potentials
 The Special Case of Software Requirements
 The Origins of Software Requirements
 The Size, Structure, and Completeness of Software Requirements
 Minimizing Software Requirements Defects
 Conclusions about Software Requirements Defects
 The Special Case of Coding Defects
Estimating Software Defect Prevention
Estimating Software Defect Detection and Defect Removal
Measuring Application Structural Quality
 Measuring Reliability
 Measuring Performance Efficiency
 Measuring Security
 Measuring Maintainability
 Measuring Size
 Summary of Application Structural Quality Measurement Attributes
Examples of Structural Quality Assessments
 Bypassing the Architecture
 Failure to Control Processing Volumes
 Application Resource Imbalances
 Security Weaknesses
 Lack of Defensive Mechanisms
Table of Contents

Desiderata for Systems Evaluating Structural Quality

Three Problems That Distort Software Economic Analysis
 Leakage from Software Historical Data
 Economic Problems with Lines of Code (LOC) Metrics
 Economic Problems with Cost-per-Defect Metrics
 Case A: Poor Quality
 Case B: Good Quality
 Case C: Zero Defects
 Useful Rules of Thumb for Predicting Software Defect Potentials

Summary and Conclusions on Software Quality Estimation and Measurement

Chapter 3: Software Defect Prevention
 Introduction
 The Early History of Defect Prevention Studies in the 1970s at IBM
 Synergistic Combinations of Defect Prevention Methods
 Defect Potentials and Defect Origins
 Defect Prevention, Patterns, and Certified Reusable Materials
 Software Defect Prevention and Application Size

Analysis of Defect Prevention Results
 Agile Embedded Users
 Automated Quality Predictions
 Benchmarks of Software Quality Data
 Capability Maturity Model Integrated (CMMI)
 Certification Programs
 Cost-per-Defect Measures
 Cost of Quality (COQ)
 Cyclomatic Complexity Measures (and Related Complexity Measures)
 Defect Measurements and Defect Tracking
 Formal Inspections
 Function Point Quality Measures
Table of Contents

ISO Quality Standards, IEEE Quality Standards, and Other Industry Standards
Quality Function Deployment (QFD)
Risk Analysis
Six Sigma
Static Analysis

Summary and Conclusions of Software Defect Prevention

Chapter 4: Pretest Defect Removal

Introduction
Small Project Pretest Defect Removal
Large System Pretest Defect Removal
Analysis of Pretest Defect Removal Activities
 Personal Desk Checking
 Informal Peer Reviews
 Automated Text Checking for Documents
 Proofs of Correctness
 Scrum Sessions
 Poka Yoke
 Kaizen
 Pair Programming
 Client Reviews of Specifications
 Independent Verification and Validation (IV&V)
Software Quality Assurance (SQA) Reviews
Phase Reviews
 Inspections (Requirements, Architecture, Design, Code, and Other Deliverables)
 User Documentation Editing and Proofreading
 Automated Static Analysis of Source Code

Summary and Conclusions about Pretest Defect Removal

Chapter 5: Software Testing
Table of Contents

Introduction
 Black Box and White Box Testing
 Functional and Nonfunctional Testing
 Automated and Manual Testing
 Discussion of the General Forms of Software Testing
 Subroutine Testing
 PSP/TSP Unit Testing
 Extreme Programming (XP) Unit Testing
 Unit Testing
 New Function Testing
 Regression Testing
 Integration Testing
 System Testing
 The Specialized Forms of Software Testing
 Stress or Capacity Testing
 Performance Testing
 Viral Protection Testing
 Penetration Testing
 Security Testing
 Platform Testing
 Supply Chain Testing
 Clean Room Testing
 Litigation Testing
 Cloud Testing
 Service Oriented Architecture (SOA) Testing
 Independent Testing
 Nationalization Testing
 Case Study Testing
 The Forms of Testing Involving Users or Clients
 Agile Testing
 Usability Testing
Table of Contents

Field Beta Testing
Lab Testing
Customer Acceptance Testing
Test Planning
Test Case Design Methods
Errors or Bugs in Test Cases
Numbers of Testing Stages for Software Projects
Testing Pattern Variations by Industry and Type of Software
Testing Pattern Variations by Size of Application
Testing Stages Noted in Lawsuits Alleging Poor Quality
Using Function Points to Estimate Test Case Volumes
Using Function Points to Estimate the Numbers of Test Personnel
Using Function Points to Estimate Testing Effort and Costs
Testing by Developers or by Professional Test Personnel

Summary and Conclusions on Software Testing

Chapter 6: Post-Release Defect Removal

Introduction
 Post-Release Defect Severity Levels
 Severity Levels from a Structural Quality Perspective
 Maintainability of Software
 Defect Discovery Rates by Software Application Users
 Invalid Defect Reports
 Abeyant Defects That Occur Under Unique Conditions
 Duplicate Defects Reported by Many Customers
 First-Year Defect Discovery Rates
 Measuring Defect Detection Efficiency (DDE) and Defect Removal Efficiency (DRE)
 Variations in Post-Release Defect Reports
 Variations in Methods of Reporting Software Defects
 Who Repairs Defects after They Are Reported?
Table of Contents

Case Study 1: Development Personnel Tasked with Maintenance Defect Repairs
Case Study 2: Maintenance Specialists Handle Defect Repairs
Comparing the Case Studies
Litigation Due to Poor Quality
Cost Patterns of Post-Release Defect Repairs
Software Occupation Groups Involved with Defect Repairs
Examining the Independent Variables of Post-Release Defect Repairs
The Size of the Application in Function Points
Error-Prone Modules in Software Applications
User and Industry Costs from Post-Release Defects
Impact of Security Flaws on Corporations and Government Agencies
Customer Logistics for Defect Reports and Repair Installation
Case Study 1: A Small Application by a Small Company
Case Study 2: A Large Application by a Large Company
Measurement Issues in Maintenance and Post-Release Defect Repairs

Summary and Conclusions on Post-Release Defects

Chapter 7: Analyzing the Economics of Software Quality

Introduction
The Economic Value of Software
Methods of Measuring Value
Funding Approval and Application Size
The Impact of Software Construction Difficulties on Software Quality
Revenue Generation from Software
Difference Between Software and Other Industries
Cost Reduction from Software

Economic Impact of Low-Quality and High-Quality Software
Software Development and Maintenance
Software as a Marketed Commodity
Table of Contents

Software as a Method of Human Effort Reduction
Software and Innovative New Kinds of Products
Technical DebtA Measure of the Effect of Software Quality on
Software Costs
A Framework for Quantifying Business Value
Moving Beyond Functional Quality
The Impact of Software Structure on Quality
The Impact of Staff Training on Quality
The Impact of Professional Certification on Quality
The Impact of Technology Investment on Quality
The Impact of Project Management on Quality
The Impact of Quality-Control Methodologies and Tools on Quality
The Impact of High and Low Quality on Software Schedules
The Impact of High and Low Quality on Software Staffing
The Impact of High and Low Quality on Software Development Effort
The Impact of High and Low Quality on Development Productivity Rates
The Impact of High and Low Quality on Software Development Costs
The Impact of High and Low Quality on Development Cost per Function Point
The Impact of High and Low Quality on Project Cancellation Rates
The Impact of High and Low Quality on the Timing of Cancelled Projects
The Impact of High and Low Quality on Cancelled Project Effort
The Impact of High and Low Quality on Effort Compared to Average Projects
The Impact of High and Low Quality on Software Test Stages
The Impact of High and Low Quality on Testing as a Percent of Development
The Impact of High and Low Quality on Test Cases per Function Point
Table of Contents

The Impact of High and Low Quality on Numbers of Test Cases Created
The Impact of High and Low Quality on Test Coverage
The Impact of Professional Testers on High and Low Quality
The Impact of High and Low Quality on Software Defect Potentials
The Impact of High and Low Quality on Total Software Defects
The Impact of High and Low Quality on Defect Detection Efficiency (DDE)
The Impact of High Quality and Low Quality on Defect Removal Efficiency (DRE)
The Impact of High and Low Quality on Total Defect Removal
The Impact of High and Low Quality on Defects Delivered to Customers
The Impact of High and Low Quality on Delivered Defects per Function Point
Impact of High and Low Quality on Delivered Defect Severity Levels
The Impact of High and Low Quality on Severe Defects per Function Point
The Impact of High and Low Quality on Software Reliability
The Impact of High and Low Quality on Maintenance and Support
The Impact of High and Low Quality on Maintenance and Support Costs
The Impact of High and Low Quality on Maintenance Defect Volumes
The Impact of High and Low Quality on Software Enhancements
The Impact of High and Low Quality on Enhancement Costs
The Impact of High and Low Software Quality on Maintenance and Enhancement Staffing
The Impact of High and Low Quality on Total Effort for Five Years
The Impact of High and Low Quality on Total Cost of Ownership (TCO)
The Impact of High and Low Quality on Cost of Quality (COQ)
Table of Contents

The Impact of High and Low Quality on TCO and COQ per Function Point
The Impact of High and Low Quality on the Useful Life of Applications
The Impact of High and Low Quality on Software Application Tangible Value
The Impact of High and Low Quality on Return on Investment (ROI)
The Impact of High and Low Quality on the Costs of Cancelled Projects
The Impact of High and Low Quality on Cancellation Cost Differentials
The Distribution of High-, Average-, and Low-Quality Software Projects

Summary and Conclusions on the Economics of Software Quality
High-Quality Results for 10,000 Function Points
Low-Quality Results for 10,000 Function Points

References and Readings
Index