

Introductory CHEMISTRY

SEVENTH EDITION IN SI UNITS

Nivaldo J. Tro

Nivaldo J. Tro

Balance Al next. Since there are 2 Al atoms on the right side of the equation, place a 2 in front of Al on the left side of the equation.	$2 \operatorname{Al}(s) + 3 \operatorname{H}_2 \operatorname{SC}$	$D_4(aq) \longrightarrow A$	$\mathrm{Il}_2(\mathrm{SO}_4)_3(\mathit{aq}) + \mathrm{H}_2(\mathit{g})$
Balance H next. Since there are 6 H atoms on the left side, place a 3 in front of $H_2(g)$ on the right side.	$2 \operatorname{Al}(s) + 3 \operatorname{H}_2 \operatorname{SO}$	$O_4(aq) \longrightarrow A$	$l_2(SO_4)_3(aq) + 3H_2($
Finally, sum the number of atoms on each side to make sure that the equation is balanced.	$2 \operatorname{Al}(s) + 3 \operatorname{H}_2 \operatorname{SO}_4(aq) \longrightarrow \operatorname{Al}_2(\operatorname{SO}_4)_3(aq) + 3 \operatorname{H}_2(g)$		
sure that the equation is balanced.	Reactants		Products
sure that the equation is balanced.	Reactants 2 Al atoms	 →	Products 2 Al atoms
sure that the equation is balanced.		——→ ——→	
sure that the equation is balanced.	2 Al atoms	——→ ——→	2 Al atoms
sure that the equation is balanced.	2 Al atoms 6 H atoms	——————————————————————————————————————	2 Al atoms 6 H atoms

► SKILLBUILDER 7.4 | Balancing Chemical Equations

Write a balanced equation for the reaction of aqueous lead(II) acetate with aqueous potassium iodide to form solid lead(II) iodide and aqueous potassium acetate.

▶ **FOR MORE PRACTICE** Problems 39, 40, 41, 42, 43, 44.

EXAMPLE 7.5 Balancing Chemical Equations

Balance the chemical equation.	
Fe(s) + HCl(aq)	$\rightarrow \text{FeCl}_3(aq) + \text{H}_2(g)$
Since Cl occurs in only one compound on each side of the equation, balance it first. One Cl atom is on the left side of the equation, and 3 Cl atoms are on the right side. To balance Cl, place a 3 in front of HCl.	SOLUTION $Fe(s) + 3 HCl(aq) \longrightarrow FeCl_3(aq) + H_2(g)$
Since H and Fe occur as free elements, balance them last. There is 1 Fe atom on the left side of the equation and 1 Fe atom on the right, so Fe is balanced. There are 3 H atoms on the left and 2 H atoms on the right. Balance H by placing a $\frac{3}{2}$ in front of H ₂ . (That way you don't alter other elements that are already balanced.)	$Fe(s) + 3 HCl(aq) \longrightarrow FeCl_3(aq) + \frac{3}{2} H_2(g)$
The equation now contains a coefficient fraction; clear it by multiplying the entire equation (both sides) by 2.	$\begin{aligned} & \left[\operatorname{Fe}(s) + 3 \operatorname{HCl}(aq) \longrightarrow \operatorname{FeCl}_{3}(aq) + \frac{3}{2} \operatorname{H}_{2}(g) \right] \times 2 \\ & 2 \operatorname{Fe}(s) + 6 \operatorname{HCl}(aq) \longrightarrow 2 \operatorname{FeCl}_{3}(aq) + 3 \operatorname{H}_{2}(g) \end{aligned}$
Finally, sum the number of atoms on each side to check that the equation is balanced.	$2 \operatorname{Fe}(s) + 6 \operatorname{HCl}(aq) \longrightarrow 2 \operatorname{FeCl}_3(aq) + 3 \operatorname{H}_2(g)$
	Reactants Products
	2 Fe atoms 2 Fe atoms
	6 Cl atoms — 6 Cl atoms
	6 H atoms

Balance the chemical equation.

$$HCl(g) + O_2(g) \longrightarrow H_2O(l) + Cl_2(g)$$

▶ **FOR MORE PRACTICE** Problems 45, 46, 47, 48, 49, 50, 51, 52.

CONCEPTUAL CHECKPOINT 7.3

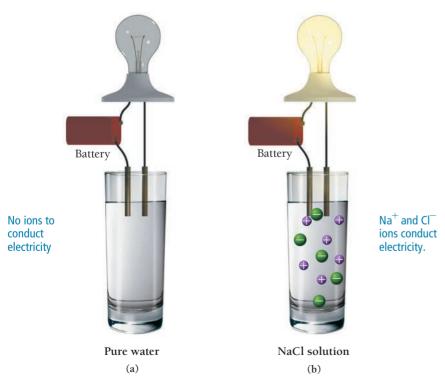
Which quantity must always be the same on both sides of a balanced chemical equation?

- (a) the number of each type of atom
- (b) the number of each type of molecule
- (c) the sum of all of the coefficients

7.5 Aqueous Solutions and Solubility: Compounds Dissolved in Water

Determine whether a compound is soluble.

In the previous section, we balanced chemical equations that represent chemical reactions. We now turn to investigating several types of reactions.



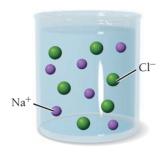
Types of Aqueous Solutions and Solubility

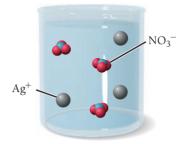
Aqueous Solutions

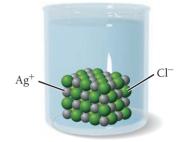
Since many of these reactions occur in water, we must first understand *aqueous solutions*. Reactions occurring in aqueous solutions are among the most common and important. An **aqueous solution** is a homogeneous mixture of a substance with water. For example, a sodium chloride (NaCl) solution (also called a saline solution) is composed of sodium chloride dissolved in water. Sodium chloride solutions are common both in the oceans and in living cells. You can form a sodium chloride solution yourself by adding table salt to water. As you stir the salt into the water, it seems to disappear. However, you know the salt is still there because if you taste the water, it has a salty flavor. How does sodium chloride dissolve in water?

Strong Electrolyte Solution

▲ FIGURE 7.6 lons as conductors (a) Pure water does not conduct electricity. (b) lons in a sodium chloride solution conduct electricity, causing the bulb to light. Solutions such as NaCl are called strong electrolyte solutions.


When ionic compounds such as NaCl dissolve in water, they usually dissociate into their component ions. A sodium chloride solution, represented as NaCl(*aq*), does not contain any NaCl units; only dissolved Na⁺ ions and Cl⁻ions are present.


We know that NaCl is present as independent sodium and chloride ions in solution because sodium chloride solutions conduct electricity, which requires the presence of freely moving charged particles. Substances (such as NaCl) that completely dissociate into ions in solution are strong electrolytes, and the resultant solutions are strong electrolyte solutions (FIGURE 7.6). Similarly, a silver nitrate solution, represented as AgNO₃(aq), does not contain any AgNO3 units, but only dissolved Ag⁺ ions and NO₃⁻ ions. It, too, is a strong electrolyte solution. When compounds containing polyatomic ions such as NO₃- dissolve, the polyatomic ions dissolve as intact units.


Not all ionic compounds, however, dissolve in water. AgCl, for example, does not. If we add AgCl to water, it remains as solid AgCl and appears as a white solid at the bottom of the beaker.

Solubility

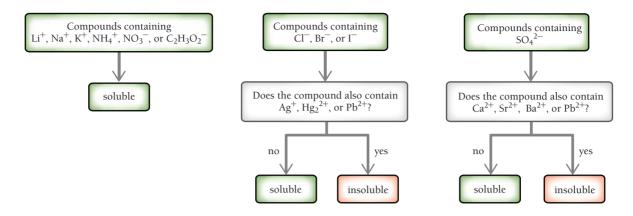
A compound is **soluble** in a particular liquid if it dissolves in that liquid; a compound is **insoluble** if it does not dissolve in the liquid. NaCl, for example, is soluble in water. If we mix solid sodium chloride into water, it dissolves and forms a strong electrolyte solution. AgCl, on the other hand, is insoluble in water. If we mix solid silver chloride into water, it remains as a solid within the liquid water.

A sodium chloride solution contains independent Na⁺ and Cl⁻ ions.

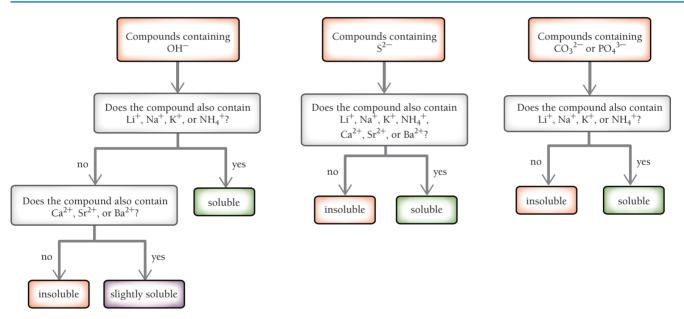
A silver nitrate solution contains independent Ag⁺ and NO₃⁻ ions.

When silver chloride is added to water, it remains as solid AgCl—it does not dissolve into independent ions.

There is no easy way to predict whether a particular compound will be soluble or insoluble in water. For ionic compounds, however, empirical rules have been deduced from observations of many compounds. These **solubility rules** are summarized in Table 7.3 and **FIGURE 7.7**. For example, the solubility rules indicate that compounds containing the lithium ion are *soluble*. That means that compounds such as LiBr, LiNO₃, Li₂SO₄, LiOH, and Li₂CO₃ all dissolve in water to form strong electrolyte solutions. If a compound contains Li⁺, it is soluble. Similarly, the solubility rules state that compounds containing the NO₃⁻ ion are soluble. Compounds such as AgNO₃, Pb(NO₃)₂, NaNO₃, Ca(NO₃)₂, and Sr(NO₃)₂ all dissolve in water to form strong electrolyte solutions.


The solubility rules also state that, with some exceptions, compounds containing the ${\rm CO_3}^{2-}$ ion are *insoluble*. Compounds such as ${\rm CuCO_3}$, ${\rm CaCO_3}$, ${\rm SrCO_3}$, and ${\rm FeCO_3}$ do not dissolve in water. Note that the solubility rules have many exceptions. For example, compounds containing ${\rm CO_3}^{2-}$ are *soluble when paired with* ${\rm Li^+}$, ${\rm Na^+}$, ${\rm K^+}$, or ${\rm NH_4}^+$. Thus ${\rm Li_2CO_3}$, ${\rm Na_2CO_3}$, ${\rm K_2CO_3}$, and $({\rm NH_4})_2{\rm CO_3}$ are all soluble.

The second of th	
TABLE 7.3 Solubility Rules	
Compounds Containing the Following Ions Are Mostly Soluble	Exceptions
Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	None
NO ₃ -, C ₂ H ₃ O ₂ -	None
Cl-, Br-, l-	When any of these ions pair with Ag^+ , $Hg_2^{\ 2^+}$, or Pb^{2^+} , the compound is insoluble.
SO ₄ ²⁻	When SO ₄ ²⁻ pairs with Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Pb ²⁺ , the compound is insoluble.
Compounds Containing the Following Ions Are Mostly Insoluble	Exceptions
OH-, S ²⁻	When either of these ions pairs with Li ⁺ , Na ⁺ , K ⁺ , or NH ₄ ⁺ , the compound is soluble. When S ²⁻ pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the compound is soluble. When OH ⁻ pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the compound is slightly soluble.*
CO ₃ ²⁻ , PO ₄ ³⁻	When either of these ions pairs with Li ⁺ , Na ⁺ , K ⁺ , or NH_4^+ , the compound is soluble.


^{*}For many purposes, these can be considered insoluble.

The solubility rules apply only to the solubility of the compounds in water.

Compounds That Are Mostly Soluble

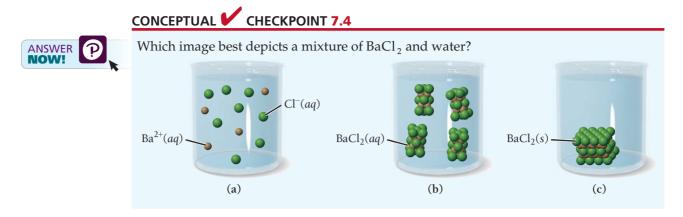
Compounds That Are Mostly Insoluble

▲ FIGURE 7.7 Solubility rules flowchart

EXAMPLE 7.6 Determining Whether a Compound Is Soluble

Is each compound soluble or insoluble?

- (a) AgBr
- (b) CaCl₂
- (c) $Pb(NO_3)$,
- (d) PbSO₄


SOLUTION

- (a) Insoluble; compounds containing Br⁻ are normally soluble, but Ag⁺ is an exception.
- (b) Soluble; compounds containing Cl^- are normally soluble, and Ca^{2+} is not an exception.
- (c) Soluble; compounds containing NO₃⁻ are always soluble.
- (d) Insoluble; compounds containing SO_4^{2-} are normally soluble, but Pb²⁺ is an exception.

▶ SKILLBUILDER 7.6 | Determining Whether a Compound Is Soluble

Is each compound soluble or insoluble?

- (a) CuS
- (b) FeSO₄
- (c) PbCO₃
- (d) NH₄Cl
- ▶ **FOR MORE PRACTICE** Example 7.18; Problems 61, 62, 63, 64, 65, 66.

7.6 Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid

Predict and write equations for precipitation reactions.

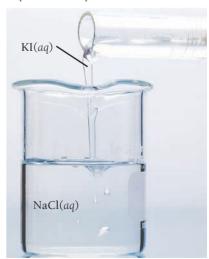
Precipitation Reactions

Recall from Section 7.1 that sodium carbonate in laundry detergent reacts with dissolved Mg²⁺ and Ca²⁺ ions to form solids that precipitate (come out of) solution. This reaction is an example of a **precipitation reaction**—a reaction that forms a solid, called a **precipitate**, when two aqueous solutions are mixed.

Precipitation reactions are common in chemistry. Potassium iodide and lead nitrate, for example, both form colorless, strong electrolyte solutions when dissolved in water (see the solubility rules in Section 7.5). When the two solutions are combined, however, a brilliant yellow precipitate forms (**FIGURE 7.8**). We describe this precipitation reaction with the chemical equation:

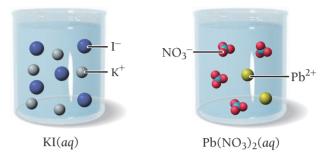
$$2 \text{KI}(aq) + \text{Pb}(\text{NO}_3)_2(aq) \longrightarrow \text{PbI}_2(s) + 2 \text{KNO}_3(aq)$$

Precipitation reactions do not always occur when two aqueous solutions mix. For example, when we combine solutions of KI(aq) and NaCl(aq), nothing happens (\blacktriangledown FIGURE 7.9).

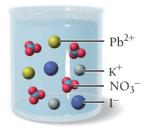

$$KI(aq) + NaCl(aq) \longrightarrow NO REACTION$$

 $2 \text{ KI}(aq) + \text{Pb}(\text{NO}_3)_2(aq) \longrightarrow \text{PbI}_2(s) + 2 \text{ KNO}_3(aq)$

▲ FIGURE 7.8 Precipitation When we mix a potassium iodide solution with a lead(II) nitrate solution, a brilliant yellow precipitate of $Pbl_2(s)$ forms.

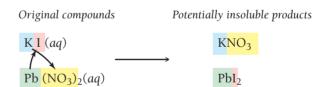

▲ FIGURE 7.9 No reaction When we mix a potassium iodide solution with a sodium chloride solution, no reaction occurs.

The key to predicting precipitation reactions is understanding that *only insoluble compounds form precipitates*. In a precipitation reaction, two solutions containing

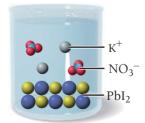

soluble compounds combine and an insoluble compound precipitates. Consider the precipitation reaction from Figure 7.8:

$$2 \operatorname{KI}(\mathit{aq}) + \operatorname{Pb(NO_3)_2}(\mathit{aq}) \longrightarrow \operatorname{PbI_2}(\mathit{s}) + 2 \operatorname{KNO_3}(\mathit{aq}) \\ \underset{\text{soluble}}{\longrightarrow} \operatorname{Pbioluble}$$

KI and $Pb(NO_3)_2$ are both soluble, but the precipitate, PbI_2 , is *insoluble*. Before mixing, KI(aq) and $Pb(NO_3)_2(aq)$ are each dissociated in their respective solutions.



The instant that the solutions are mixed, all four ions are present.



KI(aq) and $Pb(NO_3)_2(aq)$

However, new compounds—potentially insoluble ones—are now possible. Specifically, the cation from one compound can pair with the anion from the other compound to form new (and potentially insoluble) products:

If, on the one hand, the *potentially insoluble* products are both *soluble*, no reaction occurs. If, on the other hand, one or both of the potentially insoluble products are *indeed insoluble*, a precipitation reaction occurs. In this case, KNO_3 is soluble, but PbI_2 is insoluble. Consequently, PbI_2 precipitates.

 $PbI_2(s)$ and $KNO_3(aq)$

To predict whether a precipitation reaction occurs when two solutions are mixed and to write an equation for the reaction, we follow the steps in the procedure that accompanies Examples 7.7 and 7.8. As usual, the steps are shown in the left column, and two examples of applying the procedure are shown in the center and right columns.