

General, Organic, and Biological Chemistry

Structures of Life

SIXTH EDITION

Timberlake

General, Organic, and Biological Chemistry

STRUCTURES OF LIFE

FIGURE 7.8 gives a summary of the calculations to show the connections between the moles of a compound, its mass in grams, the number of molecules (or formula units if ionic), and the moles and atoms of each element in that compound.

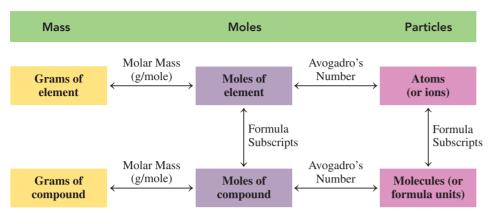


FIGURE 7.8 ▶ The moles of a compound are related to its mass in grams by molar mass, to the number of molecules (or formula units) by Avogadro's number, and to the moles of each element by the subscripts in the formula.

What steps are needed to calculate the number of atoms of H in 5.00 g of CH₄?

ENGAGE

Why are there more grams of chlorine than grams of fluorine in 1 mole of Freon-12, CCl₂F₂?

PRACTICE PROBLEMS

7.6 Calculations Using Molar Mass

- **7.41** Calculate the mass, in grams, for each of the following:
 - a. 1.50 moles of Na
- **b.** 2.80 moles of Ca
- c. 0.125 mole of CO_2
- **d.** 0.0485 mole of Na_2CO_3
- e. 7.14×10^2 moles of PCl₃
- **7.42** Calculate the mass, in grams, for each of the following:
 - a. 5.12 moles of Al
- **b.** 0.75 mole of Cu
- c. 3.52 moles of MgBr₂
- **d.** 0.145 mole of C_2H_6O
- e. 2.08 moles of $(NH_4)_2SO_4$
- 7.43 Calculate the mass, in grams, in 0.150 mole of each of the following:
 - a. Ne
- **b.** I₂
- c. Na₂O

- **d.** $Ca(NO_3)_2$
- e. C₆H₁₄
- 7.44 Calculate the mass, in grams, in 2.28 moles of each of the following:
 - a. Pd
- b. SO₃
- c. $C_3H_6O_3$

- **d.** $Mg(HCO_3)_2$
- e. SF₆
- 7.45 Calculate the number of moles in each of the following:
 - a. 82.0 g of Ag
- **b.** 0.288 g of C
- c. 15.0 g of ammonia, NH₃
- **d.** 7.25 g of CH₄
- e. $245 \text{ g of } \text{Fe}_2\text{O}_3$
- **7.46** Calculate the number of moles in each of the following:
 - a. 85.2 g of Ni
- **b.** 144 g of K
- c. 6.4 g of H₂O
- d. 308 g of BaSO_4
- e. 252.8 g of fructose, $C_6H_{12}O_6$
- 7.47 Calculate the number of moles in 25.0 g of each of the following:
 - a. He
- **b.** O_2
- $\mathbf{c.}$ Al(OH)₃

- **d.** Ga_2S_3
- e. C_4H_{10} , butane
- **7.48** Calculate the number of moles in 4.00 g of each of the following:
 - a. Au
- **b.** SnO_2
- c. CS_2

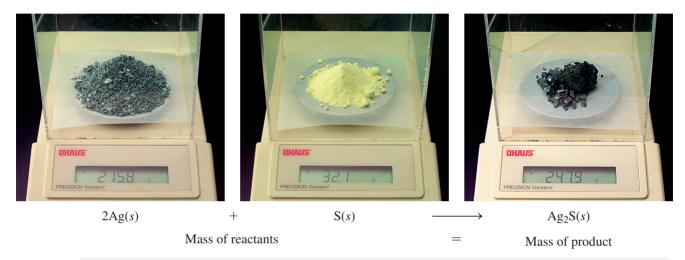
- **d.** Ca_3N_2
- e. $C_6H_8O_6$, vitamin C

Clinical Applications

- 7.49 Chloroethane, C_2H_5Cl , is used to diagnose dead tooth nerves.
 - **a.** How many moles are in 34.0 g of chloroethane?
 - **b.** How many grams are in 1.50 moles of chloroethane?
- **7.50** Allyl sulfide, $(C_3H_5)_2S$, gives garlic, onions, and leeks their characteristic odor.

The characteristic odor of garlic is due to a sulfurcontaining compound.

- **a.** How many moles are in 23.2 g of allyl sulfide?
- **b.** How many grams are in 0.75 mole of allyl sulfide?
- 7.51 a. The compound MgSO₄, Epsom salts, is used to soothe sore feet and muscles. How many grams will you need to prepare a bath containing 5.00 moles of Epsom salts?
 - **b.** Potassium iodide, KI, is used as an expectorant. How many grams are in 0.450 mole of potassium iodide?
- **7.52** a. Cyclopropane, C_3H_6 , is an anesthetic given by inhalation. How many grams are in 0.25 mole of cyclopropane?
 - **b.** The sedative Demerol hydrochloride has the formula C₁₅H₂₂ClNO₂. How many grams are in 0.025 mole of Demerol hydrochloride?
- 7.53 Dinitrogen oxide (or nitrous oxide), N₂O, also known as laughing gas, is widely used as an anesthetic in dentistry.
 - **a.** How many grams are in 1.50 moles of dinitrogen oxide?
 - **b.** How many moles are in 34.0 g of dinitrogen oxide?
- 7.54 Chloroform, CHCl₃, was formerly used as an anesthetic but its use was discontinued due to respiratory and cardiac failure.
 - **a.** How many grams are in 0.122 mole of chloroform?
 - **b.** How many moles are in 26.7 g of chloroform?


7.7 Mole Relationships in Chemical Equations

LEARNING GOAL Use a mole-mole factor from a balanced chemical equation to calculate the number of moles of another substance in the reaction.

In any chemical reaction, the total amount of matter in the reactants is equal to the total amount of matter in the products. Thus, the total mass of all the reactants must be equal to the total mass of all the products. This is known as the Law of Conservation of Mass, which states that there is no change in the total mass of the substances reacting in a chemical reaction.

For example, tarnish (Ag₂S) forms when silver reacts with sulfur to form silver sulfide.

$$2Ag(s) + S(s) \longrightarrow Ag_2S(s)$$

In the chemical reaction of Ag and S, the mass of the reactants is the same as the mass of the product, Ag₂S.

In this reaction, the number of silver atoms that reacts is twice the number of sulfur atoms. When 200 silver atoms react, 100 sulfur atoms are required. However, in the actual chemical reaction, many more atoms of both silver and sulfur would react. If we are dealing with moles of silver and sulfur, then the coefficients in the equation can be interpreted in terms of moles. Thus, 2 moles of silver react with 1 mole of sulfur to form 1 mole of Ag₂S. Because the molar mass of each can be determined, the moles of Ag, S, and Ag₂S can also be stated in terms of mass in grams of each. Thus, 215.8 g of Ag and 32.1 g of S react to form 247.9 g of Ag₂S. The total mass of the reactants (247.9 g) is equal to the mass of product (247.9 g). The various ways in which a chemical equation can be interpreted are seen in TABLE 7.6.

TABLE 7.6 Information Available from a Balanced Equation							
	Reactants			Products			
Equation	2Ag(s)	+ S(s)	\longrightarrow	$Ag_2S(s)$			
Atoms	2 Ag atoms	+ 1 S atom	\longrightarrow	1 Ag ₂ S formula unit			
	200 Ag atoms	+ 100 S atoms	\longrightarrow	100 Ag ₂ S formula units			
Avogadro's Number of Atoms	$2(6.02 \times 10^{23})$ Ag atoms	$+ 1(6.02 \times 10^{23})$ S atoms	\longrightarrow	$1(6.02 \times 10^{23}) \text{ Ag}_2\text{S}$ formula units			
Moles	2 moles of Ag	+ 1 mole of S	\longrightarrow	1 mole of Ag ₂ S			
Mass (g)	2(107.9 g) of Ag	+ 1(32.07 g) of S	\longrightarrow	1(247.9 g) of Ag ₂ S			
Total Mass (g)	24	7.9 g	\longrightarrow	247.9 g			

Mole-Mole Factors from a Balanced Equation

When iron reacts with sulfur, the product is iron(III) sulfide.

$$2Fe(s) + 3S(s) \longrightarrow Fe_2S_3(s)$$

In the chemical reaction of Fe and S, the mass of the reactants is the same as the mass of the product, Fe₂S₃.

From the balanced chemical equation, we see that 2 moles of iron reacts with 3 moles of sulfur to form 1 mole of iron(III) sulfide. Actually, any amount of iron or sulfur may be used, but the ratio of iron reacting with sulfur will always be the same. From the coefficients, we can write mole-mole factors between reactants and between reactants and products. The coefficients used in the mole–mole factors are exact numbers; they do not limit the number of significant figures.

TEST

Try Practice Problems 7.55 and 7.56

Using Mole–Mole Factors in Calculations

Whenever you prepare a recipe, adjust an engine for the proper mixture of fuel and air, or prepare medicines in a pharmaceutical laboratory, you need to know the proper amounts of reactants to use and how much of the product will form. Now that we have written all the possible conversion factors for the balanced equation $2Fe(s) + 3S(s) \longrightarrow Fe_2S_3(s)$, we will use those mole-mole factors in a chemical calculation in Sample Problem 7.11.

▶ SAMPLE PROBLEM 7.11 Calculating Moles of a Reactant

TRY IT FIRST

In the chemical reaction of iron and sulfur, how many moles of sulfur are needed to react with 1.42 moles of iron?

$$2Fe(s) + 3S(s) \longrightarrow Fe_2S_3(s)$$

SOLUTION

STEP 1 State the given and needed quantities (moles).

ANALYZE THE PROBLEM	Given	Need	Connect		
	1.42 moles of Fe	moles of S	mole-mole factor		
	Equation				
	$2Fe(s) + 3S(s) \longrightarrow Fe_2S_3(s)$				

CORE CHEMISTRY SKILL

Using Mole-Mole Factors

STEP 2 Write a plan to convert the given to the needed quantity (moles).

moles of Fe Mole-mole moles of S factor

STEP 3 Use coefficients to write mole-mole factors.

2 moles of Fe = 3 moles of S $\frac{2 \text{ moles Fe}}{3 \text{ moles S}}$ and $\frac{3 \text{ moles S}}{2 \text{ moles Fe}}$

STEP 4 Set up the problem to give the needed quantity (moles).

Exact

1.42 moles Fe
$$\times \frac{3 \text{ moles S}}{2 \text{ moles Fe}} = 2.13 \text{ moles of S}$$

Three SFs

Exact

Three SFs

STUDY CHECK 7.11

Using the equation in Sample Problem 7.11, calculate each of the following:

- a. moles of iron needed to react with 2.75 moles of sulfur
- b. moles of iron(III) sulfide produced by the reaction of 0.758 mole of sulfur

ANSWER

- a. 1.83 moles of iron
- **b.** 0.253 mole of iron(III) sulfide

TEST

Try Practice Problems 7.57 to 7.60

PRACTICE PROBLEMS

7.7 Mole Relationships in Chemical Equations

7.55 Write all of the mole–mole factors for each of the following chemical equations:

a.
$$2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$$

b.
$$4P(s) + 5O_2(g) \longrightarrow 2P_2O_5(s)$$

7.56 Write all of the mole–mole factors for each of the following chemical equations:

a.
$$2Al(s) + 3Cl_2(g) \longrightarrow 2AlCl_3(s)$$

b.
$$4HCl(g) + O_2(g) \longrightarrow 2Cl_2(g) + 2H_2O(g)$$

7.57 The chemical reaction of hydrogen with oxygen produces water.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

- a. How many moles of O₂ are required to react with 2.6 moles of H₂?
- b. How many moles of H₂ are needed to react with 5.0 moles of O₂?
- c. How many moles of H₂O form when 2.5 moles of O₂ reacts?
- 7.58 Ammonia is produced by the chemical reaction of nitrogen and hydrogen.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$
Ammonia

- a. How many moles of H_2 are needed to react with 1.8 moles of N_2 ?
- **b.** How many moles of N₂ reacted if 0.60 mole of NH₃ is produced?
- **c.** How many moles of NH₃ are produced when 1.4 moles of H₂ reacts?

7.59 Carbon disulfide and carbon monoxide are produced when carbon is heated with sulfur dioxide.

$$5C(s) + 2SO_2(g) \xrightarrow{\Delta} CS_2(l) + 4CO(g)$$

- a. How many moles of C are needed to react with 0.500 mole of SO₂?
- **b.** How many moles of CO are produced when 1.2 moles of C reacts?
- c. How many moles of SO₂ are needed to produce 0.50 mole of CS₂?
- **d.** How many moles of CS₂ are produced when 2.5 moles of C reacts?
- **7.60** In the acetylene torch, acetylene gas (C_2H_2) burns in oxygen to produce carbon dioxide, water, and energy.

$$2C_2H_2(g) + 5O_2(g) \xrightarrow{\Delta} 4CO_2(g) + 2H_2O(g)$$

- **a.** How many moles of O_2 are needed to react with 2.40 moles of C_2H_2 ?
- **b.** How many moles of CO₂ are produced when 3.5 moles of C₂H₂ reacts?
- c. How many moles of C₂H₂ are needed to produce 0.50 mole of H₂O?
- **d.** How many moles of CO_2 are produced from 0.100 mole of O_2 ?

7.8 Mass Calculations for Chemical Reactions

LEARNING GOAL Given the mass in grams of a substance in a reaction, calculate the mass in grams of another substance in the reaction.

When we have the balanced chemical equation for a reaction, we can use the mass of one of the substances (A) in the reaction to calculate the mass of another substance (B) in the reaction. However, the calculations require us to convert the mass of A to moles of A using the molar mass of A. Then we use the mole-mole factor that links substance A to substance B, which we obtain from the coefficients in the balanced equation. This mole-mole factor (B/A) will convert the moles of A to moles of B. Then the molar mass of B is used to calculate the grams of substance B.

REVIEW

Using Significant Figures in Calculations (2.3)

CORE CHEMISTRY SKILL

Converting Grams to Grams

Substance A

Molar mass

moles of A

Mole-mole factor B/A

moles of B

Molar mass

Substance B

grams of B

▶ SAMPLE PROBLEM 7.12 Calculating Mass of a Product

TRY IT FIRST

grams of A

When acetylene, C₂H₂, burns in oxygen, high temperatures are produced that are used for welding metals.

$$2C_2H_2(g) + 5O_2(g) \xrightarrow{\Delta} 4CO_2(g) + 2H_2O(g)$$

How many grams of CO₂ are produced when 54.6 g of C₂H₂ is burned?

SOLUTION

STEP 1 State the given and needed quantities (grams).

ANALYZE THE PROBLEM	Given	Need	Connect		
	54.6 g of C ₂ H ₂	grams of CO ₂	molar masses, mole–mole factor		
	Equation				
	$2C_2H_2(g) + 5O_2(g) \xrightarrow{\Delta} 4CO_2(g) + 2H_2O(g)$				

A mixture of acetylene and oxygen undergoes combustion during the welding of metals.

STEP 2 Write a plan to convert the given to the needed quantity (grams).

 $\begin{array}{ccc} \text{grams of C_2H$}_2 & \begin{array}{c} \text{Molar} \\ \text{mass} \end{array} & \text{moles of C_2H$}_2 & \begin{array}{c} \text{Mole-mole} \\ \text{factor} \end{array} & \text{moles of CO_2} & \begin{array}{c} \text{Molar} \\ \text{mass} \end{array} \end{array}$ grams of CO2

STEP 3 Use coefficients to write mole-mole factors; write molar masses.

1 mole of $CO_2 = 44.01$ g of CO_2 1 mole of $C_2H_2 = 26.04$ g of C_2H_2 $\frac{44.01 \text{ g CO}_2}{1 \text{ and}}$ and 1 mole C_2H_2 1 mole CO₂ 26.04 g C₂H₂ and 1 mole CO₂ 1 mole C₂H₂ 26.04 g C₂H₂ 2 moles of $C_2H_2 = 4$ moles of CO_2 2 moles C₂H₂ 4 moles CO₂ and 4 moles CO₂ 2 moles C₂H₂

STEP 4 Set up the problem to give the needed quantity (grams).

 $54.6 \text{ g-C}_{2}\text{H}_{2} \times \frac{1 \text{ mole C}_{2}\text{H}_{2}}{26.04 \text{ g-C}_{2}\text{H}_{2}} \times \frac{4 \text{ moles CO}_{2}}{2 \text{ moles C}_{2}\text{H}_{2}} \times \frac{44.01 \text{ g CO}_{2}}{1 \text{ mole CO}_{2}} = 185 \text{ g of CO}_{2}$ Three SFs Exact Three SFs

INTERACTIVE VIDEO

Problem 7.67

STUDY CHECK 7.12

Using the equation in Sample Problem 7.12, calculate each of the following:

- **a.** the grams of CO_2 produced when 25.0 g of O_2 reacts
- **b.** the grams of C₂H₂ needed when 65.0 g of H₂O are produced

TEST

Try Practice Problems 7.61 to 7.70

ANSWER

- **a.** 27.5 g of CO₂
- **b.** 93.9 g of C_2H_2

PRACTICE PROBLEMS

7.8 Mass Calculations for Chemical Reactions

7.61 Sodium reacts with oxygen to produce sodium oxide.

$$4\text{Na}(s) + \text{O}_2(g) \longrightarrow 2\text{Na}_2\text{O}(s)$$

- a. How many grams of Na₂O are produced when 57.5 g of Na reacts?
- b. If you have 18.0 g of Na, how many grams of O₂ are needed for the reaction?
- c. How many grams of O₂ are needed in a reaction that produces 75.0 g of Na₂O?
- 7.62 Nitrogen reacts with hydrogen to produce ammonia.

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

- a. If you have 3.64 g of H₂, how many grams of NH₃ can be produced?
- b. How many grams of H₂ are needed to react with 2.80 g of N₂?
- c. How many grams of NH₃ can be produced from 12.0 g of H₂?
- **7.63** Ammonia and oxygen react to form nitrogen and water.

$$4NH_3(g) + 3O_2(g) \longrightarrow 2N_2(g) + 6H_2O(g)$$

- a. How many grams of O_2 are needed to react with 13.6 g of NH_3 ?
- **b.** How many grams of N_2 can be produced when 6.50 g of O_2 reacts?
- c. How many grams of H₂O are formed from the reaction of 34.0 g of NH₃?
- 7.64 Iron(III) oxide reacts with carbon to give iron and carbon monoxide.

$$Fe_2O_3(s) + 3C(s) \longrightarrow 2Fe(s) + 3CO(g)$$

- **a.** How many grams of C are required to react with 16.5 g of Fe₂O₃?
- **b.** How many grams of CO are produced when 36.0 g of C reacts?
- c. How many grams of Fe can be produced when 6.00 g of Fe₂O₃ reacts?
- 7.65 Nitrogen dioxide and water react to produce nitric acid, HNO₃, and nitrogen oxide.

$$3NO_2(g) + H_2O(l) \longrightarrow 2HNO_3(aq) + NO(g)$$

- a. How many grams of H_2O are needed to react with 28.0 g of NO_2 ?
- **b.** How many grams of NO are produced from 15.8 g of H₂O?
- c. How many grams of HNO₃ are produced from 8.25 g of NO₂?

7.66 Calcium cyanamide, CaCN₂, reacts with water to form calcium carbonate and ammonia.

$$CaCN_2(s) + 3H_2O(l) \longrightarrow CaCO_3(s) + 2NH_3(g)$$

- a. How many grams of H₂O are needed to react with 75.0 g of CaCN₂?
- **b.** How many grams of NH₃ are produced from 5.24 g of CaCN₂?
- c. How many grams of CaCO₃ form if 155 g of H₂O reacts?
- **7.67** When solid lead(II) sulfide reacts with oxygen gas, the products are solid lead(II) oxide and sulfur dioxide gas.
 - **a.** Write the balanced chemical equation for the reaction.
 - **b.** How many grams of oxygen are required to react with 29.9 g of lead(II) sulfide?
 - c. How many grams of sulfur dioxide can be produced when 65.0 g of lead(II) sulfide reacts?
 - **d.** How many grams of lead(II) sulfide are used to produce 128 g of lead(II) oxide?
- **7.68** When the gases dihydrogen sulfide and oxygen react, they form the gases sulfur dioxide and water vapor.
 - a. Write the balanced chemical equation for the reaction.
 - **b.** How many grams of oxygen are needed to react with 2.50 g of dihydrogen sulfide?
 - **c.** How many grams of sulfur dioxide can be produced when 38.5 g of oxygen reacts?
 - **d.** How many grams of oxygen are needed to produce 55.8 g of water vapor?

Clinical Applications

7.69 In the body, the amino acid glycine, C₂H₅NO₂, reacts according to the following equation:

$$\begin{array}{ccc} 2\mathrm{C}_2\mathrm{H}_5\mathrm{NO}_2(aq) \ + \ 3\mathrm{O}_2(g) & \longrightarrow \\ & & & & & & & & \\ \mathrm{Glycine} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

- a. How many grams of O₂ are needed to react with 15.0 g of glycine?
- **b.** How many grams of urea are produced from 15.0 g of glycine?
- c. How many grams of CO₂ are produced from 15.0 g of glycine?
- **7.70** In the body, ethanol, C_2H_6O , reacts according to the following equation:

$$C_2H_6O(aq) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(l)$$

Ethanol

- a. How many grams of O_2 are needed to react with 8.40 g of ethanol?
- **b.** How many grams of H_2O are produced from 8.40 g of ethanol?
- c. How many grams of CO₂ are produced from 8.40 g of ethanol?