
a training and consulting firm

The definitive guide to mastering CLR and .NET

runtime, C#, and .NET development. Led by programming expert

•
•
 so you use them more efficiently
• Use generics and interfaces to define reusable algorithms
• Work effectively with special CLR types—delegates, custom

•

•
•

• Use exception handling to assist with state management
• Construct dynamically extensible apps using CLR hosting,
 AppDomains, assembly loading, and reflection
•

Canada $62.99

Get Visual C# 2012 code samples

Jeffrey Richter

CLR via C#
Fourth Edition

•
 2012

•
 Class Library

• Expertly teaches multicore programming,

• Shares practical advice from extensive
 insider and field experience

D
e
ve

lo
p

e
r

R
e
fe

re
n

ce

spine = 1.64”

https://www.pearson.de/9780735668775

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 by Jeffrey Richter

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012951989
ISBN: 978-0-7356-6745-7

Printed and bound in the United States of America.

Third Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave

Project Editor: Carol Dillingham

Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master,
a member of CM Group, Ltd.
Copyeditor: Candace Sinclair
Indexer: Jan Bednarczuk

Cover: Twist Creative • Seattle

[LSI]
[2013-05-17]

https://www.pearson.de/9780735668775

242 PART II Designing Types

Note In addition to anonymous types and the Tuple types, you might want to take a look

at the System.Dynamic.ExpandoObject class (defined in the System.Core.dll assem-

bly). When you use this class with C#’s dynamic type (discussed in Chapter 5, “Primitive,
Reference, and Value Types”), you have another way of grouping a set of properties (key/
value pairs) together. The result is not compile-time type-safe, but the syntax looks nice

(although you get no IntelliSense support), and you can pass ExpandoObject objects

between C# and dynamic languages like Python. Here’s some sample code that uses an

ExpandoObject.

dynamic e = new System.Dynamic.ExpandoObject();

e.x = 6; // Add an Int32 'x' property whose value is 6

e.y = "Jeff"; // Add a String 'y' property whose value is "Jeff"

e.z = null; // Add an Object 'z' property whose value is null

// See all the properties and their values:

foreach (var v in (IDictionary<String, Object>)e)

 Console.WriteLine("Key={0}, V={1}", v.Key, v.Value);

// Remove the 'x' property and its value

var d = (IDictionary<String, Object>)e;

d.Remove("x");

Parameterful Properties

In the previous section, the get accessor methods for the properties accepted no parameters. For this

reason, I called these properties parameterless properties. These properties are easy to understand

because they have the feel of accessing a field. In addition to these field-like properties, programming
languages also support what I call parameterful properties, whose get accessor methods accept one

or more parameters and whose set accessor methods accept two or more parameters. Different pro-

gramming languages expose parameterful properties in different ways. Also, languages use different

terms to refer to parameterful properties: C# calls them indexers and Visual Basic calls them default

properties. In this section, I’ll focus on how C# exposes its indexers by using parameterful properties.

In C#, parameterful properties (indexers) are exposed using an array-like syntax. In other words,

you can think of an indexer as a way for the C# developer to overload the [] operator. Here’s an

example of a BitArray class that allows array-like syntax to index into the set of bits maintained by

an instance of the class.

using System;

public sealed class BitArray {

 // Private array of bytes that hold the bits

 private Byte[] m_byteArray;

 private Int32 m_numBits;

 // Constructor that allocates the byte array and sets all bits to 0

 public BitArray(Int32 numBits) {

https://www.pearson.de/9780735668775

 ChAPTER 10 Properties 243

 // Validate arguments first.

 if (numBits <= 0)

 throw new ArgumentOutOfRangeException("numBits must be > 0");

 // Save the number of bits.

 m_numBits = numBits;

 // Allocate the bytes for the bit array.

 m_byteArray = new Byte[(numBits + 7) / 8];

 }

 // This is the indexer (parameterful property).

 public Boolean this[Int32 bitPos] {

 // This is the indexer's get accessor method.

 get {

 // Validate arguments first

 if ((bitPos < 0) || (bitPos >= m_numBits))

 throw new ArgumentOutOfRangeException("bitPos");

 // Return the state of the indexed bit.

 return (m_byteArray[bitPos / 8] & (1 << (bitPos % 8))) != 0;

 }

 // This is the indexer's set accessor method.

 set {

 if ((bitPos < 0) || (bitPos >= m_numBits))

 throw new ArgumentOutOfRangeException("bitPos", bitPos.ToString());

 if (value) {

 // Turn the indexed bit on.

 m_byteArray[bitPos / 8] = (Byte)

 (m_byteArray[bitPos / 8] | (1 << (bitPos % 8)));

 } else {

 // Turn the indexed bit off.

 m_byteArray[bitPos / 8] = (Byte)

 (m_byteArray[bitPos / 8] & ~(1 << (bitPos % 8)));

 }

 }

 }

}

Using the BitArray class’s indexer is incredibly simple.

// Allocate a BitArray that can hold 14 bits.

BitArray ba = new BitArray(14);

// Turn all the even-numbered bits on by calling the set accessor.

for (Int32 x = 0; x < 14; x++) {

 ba[x] = (x % 2 == 0);

}

// Show the state of all the bits by calling the get accessor.

for (Int32 x = 0; x < 14; x++) {

 Console.WriteLine("Bit " + x + " is " + (ba[x] ? "On" : "Off"));

}

https://www.pearson.de/9780735668775

244 PART II Designing Types

In the BitArray example, the indexer takes one Int32 parameter, bitPos. All indexers must have

at least one parameter, but they can have more. These parameters (as well as the return type) can be of

any data type (except void). An example of an indexer that has more than one parameter can be found

in the System.Drawing.Imaging.ColorMatrix class, which ships in the System.Drawing.dll

 assembly.

It’s quite common to create an indexer to look up values in an associative array. In fact, the

System.Collections.Generic.Dictionary type offers an indexer that takes a key and returns

the value associated with the key. Unlike parameterless properties, a type can offer multiple, over-

loaded indexers as long as their signatures differ.

Like a parameterless property’s set accessor method, an indexer’s set accessor method also con-

tains a hidden parameter, called value in C#. This parameter indicates the new value desired for the

“indexed element.”

The CLR doesn’t differentiate parameterless properties and parameterful properties; to the CLR,

each is simply a pair of methods and a piece of metadata defined within a type. As mentioned earlier,
different programming languages require different syntax to create and use parameterful proper-

ties. The fact that C# requires this[...] as the syntax for expressing an indexer was purely a choice

made by the C# team. What this choice means is that C# allows indexers to be defined only on in-
stances of objects. C# doesn’t offer syntax allowing a developer to define a static indexer property,
although the CLR does support static parameterful properties.

Because the CLR treats parameterful properties just as it does parameterless properties, the com-

piler will emit either two or three of the following items into the resulting managed assembly:

 ■ A method representing the parameterful property’s get accessor method. This is emitted only

if you define a get accessor method for the property.

 ■ A method representing the parameterful property’s set accessor method. This is emitted only

if you define a set accessor method for the property.

 ■ A property definition in the managed assembly’s metadata, which is always emitted. There’s
no special parameterful property metadata definition table because, to the CLR, parameterful
properties are just properties.

For the BitArray class shown earlier, the compiler compiles the indexer as though the original

source code were written as follows.

public sealed class BitArray {

 // This is the indexer's get accessor method.

 public Boolean get_Item(Int32 bitPos) { /* ... */ }

 // This is the indexer's set accessor method.

 public void set_Item(Int32 bitPos, Boolean value) { /* ... */ }

}

https://www.pearson.de/9780735668775

 ChAPTER 10 Properties 245

The compiler automatically generates names for these methods by prepending get_ and set_ to

the indexer name. Because the C# syntax for an indexer doesn’t allow the developer to specify an in-

dexer name, the C# compiler team had to choose a default name to use for the accessor methods; they

chose Item. Therefore, the method names emitted by the compiler are get_Item and set_Item.

When examining the .NET Framework Reference documentation, you can tell if a type offers an in-

dexer by looking for a property named Item. For example, the System.Collections.Generic.List

type offers a public instance property named Item; this property is List’s indexer.

When you program in C#, you never see the name of Item, so you don’t normally care that the

compiler has chosen this name for you. However, if you’re designing an indexer for a type that code

written in other programming languages will be accessing, you might want to change the default

name, Item, given to your indexer’s get and set accessor methods. C# allows you to rename these

methods by applying the System.Runtime.CompilerServices.IndexerNameAttribute custom

attribute to the indexer. The following code demonstrates how to do this.

using System;

using System.Runtime.CompilerServices;

public sealed class BitArray {

 [IndexerName("Bit")]

 public Boolean this[Int32 bitPos] {

 // At least one accessor method is defined here

 }

}

Now the compiler will emit methods called get_Bit and set_Bit instead of get_Item and set_

Item. When compiling, the C# compiler sees the IndexerName attribute, and this tells the compiler

how to name the methods and the property metadata; the attribute itself is not emitted into the

assembly’s metadata.2

Here’s some Visual Basic code that demonstrates how to access this C# indexer.

' Construct an instance of the BitArray type.

Dim ba as New BitArray(10)

' Visual Basic uses () instead of [] to specify array elements.

Console.WriteLine(ba(2)) ' Displays True or False

' Visual Basic also allows you to access the indexer by its name.

Console.WriteLine(ba.Bit(2)) ' Displays same as previous line

In C#, a single type can define multiple indexers as long as the indexers all take different param-

eter sets. In other programming languages, the IndexerName attribute allows you to define multiple
indexers with the same signature because each can have a different name. The reason C# won’t allow

you to do this is because its syntax doesn’t refer to the indexer by name; the compiler wouldn’t know

which indexer you were referring to. Attempting to compile the following C# source code causes the

2 For this reason, the IndexerNameAttribute class is not part of the ECMA standardization of the CLI and the C#
language.

https://www.pearson.de/9780735668775

246 PART II Designing Types

compiler to generate the following message: error C0111: Type 'SomeType' already defines

a member called 'this' with the same parameter types.

using System;

using System.Runtime.CompilerServices;

public sealed class SomeType {

 // Define a get_Item accessor method.

 public Int32 this[Boolean b] {

 get { return 0; }

 }

 // Define a get_Jeff accessor method.

 [IndexerName("Jeff")]

 public String this[Boolean b] {

 get { return null; }

 }

}

You can clearly see that C# thinks of indexers as a way to overload the [] operator, and this opera-

tor can’t be used to disambiguate parameterful properties with different method names and identical

parameter sets.

By the way, the System.String type is an example of a type that changed the name of its in-

dexer. The name of String’s indexer is Chars instead of Item. This read-only property allows you to

get an individual character within a string. For programming languages that don’t use [] operator

syntax to access this property, Chars was decided to be a more meaningful name.

Selecting the primary parameterful property

C#’s limitations with respect to indexers brings up the following two questions:

 ■ What if a type is defined in a programming language that does allow the developer to
define several parameterful properties?

 ■ How can this type be consumed from C#?

The answer to both questions is that a type must select one of the parameterful property

names to be the default property by applying an instance of System.Reflection.Default-

MemberAttribute to the class itself. For the record, DefaultMemberAttribute can be

applied to a class, a structure, or an interface. In C#, when you compile a type that defines a
parameterful property, the compiler automatically applies an instance of DefaultMember at-

tribute to the defining type and takes it into account when you use the IndexerName attribute.

This attribute’s constructor specifies the name that is to be used for the type’s default param-

eterful property.

https://www.pearson.de/9780735668775

 ChAPTER 10 Properties 247

So, in C#, if you define a type that has a parameterful property and you don’t specify the
IndexerName attribute, the defining type will have a DefaultMember attribute indicating

Item. If you apply the IndexerName attribute to a parameterful property, the defining type
will have a DefaultMember attribute indicating the string name specified in the IndexerName

attribute. Remember, C# won’t compile the code if it contains parameterful properties with dif-

ferent names.

For a language that supports several parameterful properties, one of the property method

names must be selected and identified by the type’s DefaultMember attribute. This is the only

parameterful property that C# will be able to access.

When the C# compiler sees code that is trying to get or set an indexer, the compiler actually emits

a call to one of these methods. Some programming languages might not support parameterful

properties. To access a parameterful property from one of these languages, you must call the desired

accessor method explicitly. To the CLR, there’s no difference between parameterless properties and

parameterful properties, so you use the same System.Reflection.PropertyInfo class to find the
association between a parameterful property and its accessor methods.

The Performance of Calling Property Accessor Methods

For simple get and set accessor methods, the just-in-time (JIT) compiler inlines the code so that

there’s no run-time performance hit as a result of using properties rather than fields. Inlining is when

the code for a method (or accessor method, in this case) is compiled directly in the method that is

making the call. This removes the overhead associated with making a call at run time at the expense

of making the compiled method’s code bigger. Because property accessor methods typically contain

very little code, inlining them can make the native code smaller and can make it execute faster.

Note The JIT compiler does not inline property methods when debugging code because

inlined code is harder to debug. This means that the performance of accessing a property

can be fast in a release build and slow in a debug build. Field access is fast in both debug

and release builds.

https://www.pearson.de/9780735668775

