
https://www.pearson.de/9780321617798

Praise for Core Animation

“[This book is] a neat introduction to Core Animation. Both beginners and

advanced developers will find many useful nuggets of information and tech-

niques in this book.”

—Brian Christensen

“Core Animation has prepared me for the future of user interface programming on

Macs and iPhones—and I’m glad it’s here because the future is now.”

—Brent Simmons, NetNewsWire Developer

“Anyone endeavoring to undertake animation of any significance can benefit

from owning a copy of this book. Marcus Zarra and Matt Long provide a much-

needed guide to the basics of simple and grouped animations along with stylistic

guidelines for when and how they should be used. However, it is the treatment

of the book’s advanced material that will keep this book relevant to the developer

long after it has been used to master the basics.”

—Daniel Pasco, CEO, Black Pixel

https://www.pearson.de/9780321617798

Summary
Basic animation is known as single keyframe animation. This definition helps to explain

what keyframe animation provides. The keyframes in an animation are like a list of what

CABasicAnimation refers to as its toValue field: the destination value. A list of these

values can be supplied to the keyframe animation using either the animation’s values

field or its path field. Each of these values are destinations that the animation reaches at

some point in its duration.

Keyframe animation provides a powerful way to animate any animatable layer property

using a simple list of values, making it easy for the developer because the in-between

values are automatically interpolated. This simplicity makes it a snap to create animation-

based user interfaces informative, intuitive, and easy to implement.

CHAPTER 4 Keyframe Animation66

https://www.pearson.de/9780321617798

PART III

Core Animation Layers

IN THIS PART

CHAPTER 5 Layer Transforms 69

CHAPTER 6 Layer Filters 83

CHAPTER 7 QuickTime Layers 111

CHAPTER 8 OpenGL Layer 131

CHAPTER 9 Quartz Composer Layer 149

CHAPTER 10 Other Useful Layers 161

https://www.pearson.de/9780321617798

This page intentionally left blank

https://www.pearson.de/9780321617798

IN THIS CHAPTER

. Scale Transform

. Using -rotateTransform:

. Using -rotate3DTransform:

. Anchor Points

. Combining Transforms

. Scale Versus Bounds

CHAPTER 5

Layer Transforms

Up to this point, we have discussed how to move

elements around the screen, change their color, and various

other interesting effects. In this chapter, we take that quite

a bit further. Transforms is a catchall to describe applying a

matrix transform to a layer for some startling results.

What is a transform? A transform is a term used to include

any function that alters the size, position, or rotation of an

object, in our case a layer. Transforms scale a layer up or

down and rotate a layer along one or more planes.

Transforms are applied using a matrix function that fortu-

nately we do not need to interact with directly. Whenever

we want to rotate or scale a layer, we must use a transform

to accomplish the desired effect.

The topic of matrix transforms can quickly turn into a

deeply mathematical conversation that is beyond the scope

of this chapter. Instead, this chapter touches on a few of

the more common and interesting transforms, such as

rotating a layer in 3D space or creating interesting zoom

effects, and how to bring them about.

Layer Transforms in
N O T E

Cocoa Touch

Unless otherwise specified, all the transforms discussed in

this chapter can be performed both on the desktop and on

any device that uses Cocoa Touch. However, it should be

noted that transforms can be computationally-intensive, and

on a device running Cocoa Touch, it is wise to test the

performance of the animation to confirm that it is within

acceptable boundaries.

https://www.pearson.de/9780321617798

Scale Transform
To demonstrate some of the capabilities of matrix transforms we take a simple layer and

perform several different transforms on it. The first transform scales the layer from one

size to another. To start this example, build the layers shown in Listing 5-1.

LISTING 5-1 applicationDidFinishLaunching

- (void)applicationDidFinishLaunching:(NSNotification*)notification

{

NSView *contentView = [[self window] contentView];

CALayer *layer = [CALayer layer];

CGColorRef color;

color = CGColorCreateGenericRGB(0.0f, 0.0f, 0.0f, 1.0f);

[layer setBackgroundColor:color];

[contentView setLayer:layer];

[contentView setWantsLayer:YES];

workLayer = [CALayer layer];

color = CGColorCreateGenericRGB(0.5f, 0.5f, 0.5f, 1.0f);

[workLayer setBackgroundColor:color];

[workLayer setCornerRadius:5.0f];

color = CGColorCreateGenericRGB(0.0f, 1.0f, 0.0f, 1.0f);

[workLayer setBorderColor:color];

[workLayer setBorderWidth:2.0f];

CGRect workFrame = [layer bounds];

workFrame.origin.x = workFrame.size.width / 4;

workFrame.origin.y = workFrame.size.height / 4;

workFrame.size.width /= 2;

workFrame.size.height /= 2;

[workLayer setAnchorPoint:CGPointMake(0, 0)];

[workLayer setFrame:workFrame];

[layer addSublayer:workLayer];

}

In the –applicationDidFinishLaunching: method, we grab a reference to the

contentView, set its layer and flag it as layer backed. By setting the layer, we are guaran-

teeing what type of layer the view uses for its backing.

When the contentView is set up properly, we next construct the layer that will be

manipulated. Its background color is set to gray, and the corners are rounded using

setCornerRadius:. Next, the border color is set to green with a width of 2 pixels. Finally,

CHAPTER 5 Layer Transforms70

https://www.pearson.de/9780321617798

the layer’s frame is set to be a quarter

the size of the contentView and centered

onscreen.

In Interface Builder, add three buttons

to the window; one for each transform

that we perform: Scale, Rotate, and 3D

Rotate. The resulting window is shown

in Figure 5-1.

Scale Transform 71

5

N O T E

On the iPhone, the layer is already in place.

You need to override the class method

+layerClass instead to control the layer

that is used.

FIGURE 5-1 Interface Builder Window

The Scale button is bound to the method -scaleTransform:, implemented as shown in

Listing 5-2.

LISTING 5-2 -scaleTransform:

- (IBAction)scaleTransform:(id)sender

{

NSValue *value = nil;

CABasicAnimation *animation = nil;

CATransform3D transform;

[[self workLayer] removeAllAnimations];

animation = [CABasicAnimation animationWithKeyPath:@”transform”];

transform = CATransform3DMakeScale(0.5f, 0.5f, 1.0f);

value = [NSValue valueWithCATransform3D:transform];

[animation setToValue:value];

transform = CATransform3DMakeScale(1.0f, 1.0f, 1.0f);

https://www.pearson.de/9780321617798

