

IoT Fundamentals

Networking Technologies, Protocols, and Use Cases for the Internet of Things

David Hanes • Gonzalo Salgueiro
Patrick Grossetete • Rob Barton • Jerome Henry

IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things

David Hanes, CCIE No. 3491 Gonzalo Salgueiro, CCIE No. 4541 Patrick Grossetete Robert Barton, CCIE No. 6660, CCDE No. 2013:6 Jerome Henry, CCIE No. 24750

Cisco Press

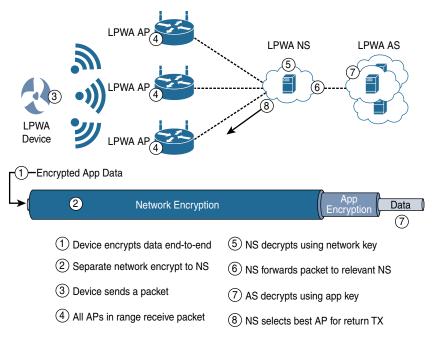


Figure 4-18 LoRaWAN Security

LoRaWAN endpoints attached to a LoRaWAN network must get registered and authenticated. This can be achieved through one of the two join mechanisms:

- Activation by personalization (ABP): Endpoints don't need to run a join procedure as their individual details, including DevAddr and the NwkSKey and AppSKey session keys, are preconfigured and stored in the end device. This same information is registered in the LoRaWAN network server.
- Over-the-air activation (OTAA): Endpoints are allowed to dynamically join a particular LoRaWAN network after successfully going through a join procedure. The join procedure must be done every time a session context is renewed. During the join process, which involves the sending and receiving of MAC layer join request and join accept messages, the node establishes its credentials with a LoRaWAN network server, exchanging its globally unique DevEUI, AppEUI, and AppKey. The AppKey is then used to derive the session NwkSKey and AppSKey keys.

Competitive Technologies

LPWA solutions and technologies are split between unlicensed and licensed bands. The licensed-band technologies are dedicated to mobile service providers that have acquired spectrum licenses; they are discussed in the next section. In addition, several technologies are targeting the unlicensed-band LPWA market to compete against LoRaWAN. The LPWA market is quickly evolving. Table 4-5 evaluates two of the best-established vendors known to provide LPWA options.

Characteristic	LoRaWAN	Sigfox	Ingenu Onramp
Frequency bands	433 MHz, 868 MHz, 902–928 MHz	433 MHz, 868 MHz, 902–928 MHz	2.4 GHz
Modulation	Chirp spread spectrum	Ultra-narrowband	DSSS
Topology	Star of stars	Star	Star; tree supported with an RPMA extender
Data rate	250 bps–50 kbps (868 MHz) 980 bps–21.9 kbps (915 MHz)	100 bps (868 MHz) 600 bps (915 MHz)	6 kbps
Adaptive data rate	Yes	No	No
Payload	59–230 bytes (868 MHz) 19–250 bytes (915 MHz)	12 bytes	6 bytes–10 KB
Two-way communications	Yes	Partial	Yes
Geolocation	Yes (LoRa GW version 2 reference design)	No	No
Roaming	Yes (LoRaWAN 1.1)	No	Yes
Specifications	LoRA Alliance	Proprietary	Proprietary

Table 4-5 gives you a good overview of two of the most established LoRaWAN competitors. This is a good starting point, but you should perform additional research to further differentiate these technologies if you are interested in deploying an LPWAN.

LoRaWAN Conclusions

The LoRaWAN wireless technology was developed for LPWANs that are critical for implementing many new devices on IoT networks. The term LoRa refers to the PHY layer, and LoRaWAN focuses on the architecture, the MAC layer, and a unified, single standard for seamless interoperability. LoRaWAN is managed by the LoRa Alliance, an industry organization.

The PHY and MAC layers allow LoRaWAN to cover longer distances with a data rate that can change depending on various factors. The LoRaWAN architecture depends on gateways to bridge endpoints to network servers. From a security perspective, LoRaWAN offers AES authentication and encryption at two separate layers.

Unlicensed LPWA technologies represent new opportunities for implementing IoT infrastructures, solutions, and use cases for private enterprise networks, broadcasters, and mobile and non-mobile service providers. The ecosystem of endpoints is rapidly growing and will certainly be the tie-breaker between the various LPWA technologies and solutions, including LoRaWAN. Smart cities operators, broadcasters, and mobile and non-mobile services providers, which are particularly crucial to enabling use cases for the consumers' markets, are addressing the need for regional or national IoT infrastructures.

As private enterprises look at developing LPWA networks, they will benefit from roaming capabilities between private and public infrastructures. These can be deployed similarly to Wi-Fi infrastructures and can coexist with licensed-band LPWA options. Overall, LoRaWAN and other LPWA technologies answer a definite need in the IoT space and are expected to continue to grow as more and more "things" need to be interconnected.

NB-IoT and Other LTE Variations

Existing cellular technologies, such as GPRS, Edge, 3G, and 4G/LTE, are not particularly well adapted to battery-powered devices and small objects specifically developed for the Internet of Things. While industry players have been developing unlicensed-band LPWA technologies, 3GPP and associated vendors have been working on evolving cellular technologies to better address IoT requirements. The effort started with the definition of new LTE device categories. The aim was to both align with specific IoT requirements, such as low throughput and low power consumption, and decrease the complexity and cost of the LTE devices. This resulted in the definition of the LTE-M work item.

Note 3rd Generation Partnership Project (3GPP) is a standards organization that unites multiple telecommunications standards development organizations to provide a stable environment to produce the reports and specifications that define 3GPP technologies. For more information on 3GPP, visit www.3gpp.org.

Because the new LTE-M device category was not sufficiently close to LPWA capabilities, in 2015 3GPP approved a proposal to standardize a new narrowband radio access technology called Narrowband IoT (NB-IoT). NB-IoT specifically addresses the requirements of a massive number of low-throughput devices, low device power consumption, improved indoor coverage, and optimized network architecture. The following sections review the proposed evolution of cellular technologies to better support the IoT opportunities by mobile service providers.

Standardization and Alliances

The 3GPP organization includes multiple working groups focused on many different aspects of telecommunications (for example, radio, core, terminal, and so on). Many service providers and vendors make up 3GPP, and the results of their collaborative work in these areas are the 3GPP specifications and studies. The workflow within 3GPP involves receiving contributions related to licensed LPWA work from the involved vendors. Then, depending on the access technology that is most closely aligned, such as 3G, LTE, or

GSM, the IoT-related contribution is handled by either 3GPP or the GSM EDGE Radio Access Networks (GERAN) group.

Mobile vendors and service providers are not willing to lose leadership in this market of connecting IoT devices. Therefore, a couple intermediate steps have been pushed forward, leading to the final objectives set for NB-IoT and documented by 3GPP. At the same time, another industry group, the GSM Association (GSMA), has proposed the Mobile IoT Initiative, which "is designed to accelerate the commercial availability of LPWA solutions in licensed spectrum." For more information on the Mobile IoT Initiative, go to www.gsma.com/connectedliving/mobile-iot-initiative/.

LTE Cat 0

The first enhancements to better support IoT devices in 3GPP occurred in LTE Release 12. A new user equipment (UE) category, Category 0, was added, with devices running at a maximum data rate of 1 Mbps. Generally, LTE enhancements target higher bandwidth improvements. Category 0 includes important characteristics to be supported by both the network and end devices. Meanwhile, the UE still can operate in existing LTE systems with bandwidths up to 20 MHz. These Cat 0 characteristics include the following:

- Power saving mode (PSM): This new device status minimizes energy consumption. Energy consumption is expected to be lower with PSM than with existing idle mode. PSM is defined as being similar to "powered off" mode, but the device stays registered with the network. By staying registered, the device avoids having to reattach or reestablish its network connection. The device negotiates with the network the idle time after which it will wake up. When it wakes up, it initiates a tracking area update (TAU), after which it stays available for a configured time and then switches back to sleep mode or PSM. A TAU is a procedure that an LTE device uses to let the network know its current tracking area, or the group of towers in the network from which it can be reached. Basically, with PSM, a device can be practically powered off but not lose its place in the network.
- Half-duplex mode: This mode reduces the cost and complexity of a device's implementation because a duplex filter is not needed. Most IoT endpoints are sensors that send low amounts of data that do not have a full-duplex communication requirement.

Note Recent LTE chipsets should have support for LTE Cat 0 because vendors began advertising LTE Cat 0 support on their chipsets starting in 2015. However, ecosystem and market acceptance still have to be demonstrated.

LTE-M

Following LTE Cat 0, the next step in making the licensed spectrum more supportive of IoT devices was the introduction of the LTE-M category for 3GPP LTE Release 13. These are the main characteristics of the LTE-M category in Release 13:

- Lower receiver bandwidth: Bandwidth has been lowered to 1.4 MHz versus the usual 20 MHz. This further simplifies the LTE endpoint.
- Lower data rate: Data is around 200 kbps for LTE-M, compared to 1 Mbps for Cat 0.
- Half-duplex mode: Just as with Cat 0, LTE-M offers a half-duplex mode that decreases node complexity and cost.
- Enhanced discontinuous reception (eDRX): This capability increases from seconds to minutes the amount of time an endpoint can "sleep" between paging cycles. A paging cycle is a periodic check-in with the network. This extended "sleep" time between paging cycles extends the battery lifetime for an endpoint significantly.

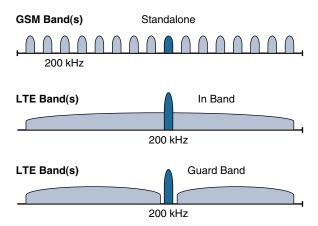
LTE-M requires new chipsets and additional software development. Commercial deployment is expected in 2017. Mobile carriers expect that only new LTE-M software will be required on the base stations, which will prevent re-investment in hardware.

NB-IoT

Recognizing that the definition of new LTE device categories was not sufficient to support LPWA IoT requirement, 3GPP specified Narrowband IoT (NB-IoT). The work on NB-IoT started with multiple proposals pushed by the involved vendors, including the following:

- Extended Coverage GSM (EC-GSM), Ericsson proposal
- Narrowband GSM (N-GSM), Nokia proposal
- Narrowband M2M (NB-M2M), Huawei/Neul proposal
- Narrowband OFDMA (orthogonal frequency-division multiple access), Qualcomm proposal
- Narrowband Cellular IoT (NB-CIoT), combined proposal of NB-M2M and NB-OFDMA
- Narrowband LTE (NB-LTE), Alcatel-Lucent, Ericsson, and Nokia proposal
- Cooperative Ultra Narrowband (C-UNB), Sigfox proposal

Consolidation occurred with the agreement to specify a single NB-IoT version based on orthogonal frequency-division multiple access (OFDMA) in the downlink and a couple options for the uplink. OFDMA is a modulation scheme in which individual users are assigned subsets of subcarrier frequencies. This enables multiple users to transmit lowspeed data simultaneously. For more information on the uplink options, refer to the 3GPP specification TR 36.802.


Three modes of operation are applicable to NB-IoT:

■ Standalone: A GSM carrier is used as an NB-IoT carrier, enabling reuse of 900 MHz or 1800 MHz.

- In-band: Part of an LTE carrier frequency band is allocated for use as an NB-IoT frequency. The service provider typically makes this allocation, and IoT devices are configured accordingly. You should be aware that if these devices must be deployed across different countries or regions using a different service provider, problems may occur unless there is some coordination between the service providers, and the NB-IoT frequency band allocations are the same.
- Guard band: An NB-IoT carrier is between the LTE or WCDMA bands. This
 requires coexistence between LTE and NB-IoT bands.

In its Release 13, 3GPP completed the standardization of NB-IoT. Beyond the radio-specific aspects, this work specifies the adaptation of the IoT core to support specific IoT capabilities, including simplifying the LTE attach procedure so that a dedicated bearer channel is not required and transporting non-IP data. Subsequent releases of 3GPP NB-IoT will introduce additional features and functionality, such as multicasting, and will be backward compatible with Release 13.

Mobile service providers consider NB-IoT the target technology as it allows them to leverage their licensed spectrum to support LPWA use cases. For instance, NB-IoT is defined for a 200-kHz-wide channel in both uplink and downlink, allowing mobile service providers to optimize their spectrum, with a number of deployment options for GSM, WCDMA, and LTE spectrum, as shown in Figure 4-19.

Figure 4-19 *NB-IoT Deployment Options*

In an LTE network, resource blocks are defined with an effective bandwidth of 180 kHz, while on NB-IoT, tone or subcarriers replace the LTE resource blocks. The uplink channel can be 15 kHz or 3.75 kHz or multi-tone (n*15 kHz, n up to 12). At Layer 1, the maximum transport block size (TBS) for downlink is 680 bits, while uplink is 1000 bits. At Layer 2, the maximum Packet Data Convergence Protocol (PDCP) service data unit (SDU) size is 1600 bytes.

NB-IoT operates in half-duplex frequency-division duplexing (FDD) mode with a maximum data rate uplink of 60 kbps and downlink of 30 kbps.