C++ Primer Fifth Edition

```
Sales_data total; // variable to hold the running sum
Sales_data trans; // variable to hold data for the next transaction
```

The question naturally arises: How are total and trans initialized?

We did not supply an initializer for these objects, so we know that they are default initialized (§ 2.2.1, p. 43). Classes control default initialization by defining a special constructor, known as the **default constructor**. The default constructor is one that takes no arguments.

As we'll, see the default constructor is special in various ways, one of which is that if our class does not *explicitly* define any constructors, the compiler will *implicitly* define the default constructor for us

The compiler-generated constructor is known as the **synthesized default constructor**. For most classes, this synthesized constructor initializes each data member of the class as follows:

- If there is an in-class initializer (§ 2.6.1, p. 73), use it to initialize the member.
- Otherwise, default-initialize (§ 2.2.1, p. 43) the member.

Because Sales_data provides initializers for units_sold and revenue, the synthesized default constructor uses those values to initialize those members. It default initializes bookNo to the empty string.

Some Classes Cannot Rely on the Synthesized Default Constructor

Only fairly simple classes—such as the current definition of Sales_data—can rely on the synthesized default constructor. The most common reason that a class must define its own default constructor is that the compiler generates the default for us *only if we do not define any other constructors for the class*. If we define any constructors, the class will not have a default constructor unless we define that constructor ourselves. The basis for this rule is that if a class requires control to initialize an object in one case, then the class is likely to require control in all cases.

The compiler generates a default constructor automatically only if a class declares *no* constructors.

A second reason to define the default constructor is that for some classes, the synthesized default constructor does the wrong thing. Remember that objects of built-in or compound type (such as arrays and pointers) that are defined inside a block have undefined value when they are default initialized (§ 2.2.1, p. 43). The same rule applies to members of built-in type that are default initialized. Therefore, classes that have members of built-in or compound type should ordinarily either initialize those members inside the class or define their own version of the default constructor. Otherwise, users could create objects with members that have undefined value.

Classes that have members of built-in or compound type usually should rely on the synthesized default constructor *only* if all such members have in-class initializers.

264 Classes

A third reason that some classes must define their own default constructor is that sometimes the compiler is unable to synthesize one. For example, if a class has a member that has a class type, and that class doesn't have a default constructor, then the compiler can't initialize that member. For such classes, we must define our own version of the default constructor. Otherwise, the class will not have a usable default constructor. We'll see in § 13.1.6 (p. 508) additional circumstances that prevent the compiler from generating an appropriate default constructor.

Defining the Sales_data Constructors

For our Sales_data class we'll define four constructors with the following parameters:

- An istream& from which to read a transaction.
- A const string& representing an ISBN, an unsigned representing the count of how many books were sold, and a double representing the price at which the books sold.
- A const string& representing an ISBN. This constructor will use default values for the other members.
- An empty parameter list (i.e., the default constructor) which as we've just seen we must define because we have defined other constructors.

Adding these members to our class, we now have

What = default Means

We'll start by explaining the default constructor:

```
Sales data() = default;
```

First, note that this constructor defines the default constructor because it takes no arguments. We are defining this constructor *only* because we want to provide other constructors as well as the default constructor. We want this constructor to do exactly the same work as the synthesized version we had been using.

Under the new standard, if we want the default behavior, we can ask the compiler to generate the constructor for us by writing = default after the parameter list. The = default can appear with the declaration inside the class body or on the definition outside the class body. Like any other function, if the = default appears inside the class body, the default constructor will be inlined; if it appears on the definition outside the class, the member will not be inlined by default.

The default constructor works for Sales_data only because we provide initializers for the data members with built-in type. If your compiler does not support in-class initializers, your default constructor should use the constructor initializer list (described immediately following) to initialize every member of the class.

Constructor Initializer List

Next we'll look at the other two constructors that were defined inside the class:

The new parts in these definitions are the colon and the code between it and the curly braces that define the (empty) function bodies. This new part is a **constructor initializer list**, which specifies initial values for one or more data members of the object being created. The constructor initializer is a list of member names, each of which is followed by that member's initial value in parentheses (or inside curly braces). Multiple member initializations are separated by commas.

The constructor that has three parameters uses its first two parameters to initialize the bookNo and units_sold members. The initializer for revenue is calculated by multiplying the number of books sold by the price per book.

The constructor that has a single string parameter uses that string to initialize bookNo but does not explicitly initialize the units_sold and revenue members. When a member is omitted from the constructor initializer list, it is implicitly initialized using the same process as is used by the synthesized default constructor. In this case, those members are initialized by the in-class initializers. Thus, the constructor that takes a string is equivalent to

It is usually best for a constructor to use an in-class initializer if one exists and gives the member the correct value. On the other hand, if your compiler does not yet support in-class initializers, then every constructor should explicitly initialize every member of built-in type.

Constructors should not override in-class initializers except to use a different initial value. If you can't use in-class initializers, each constructor should explicitly initialize every member of built-in type.

266 Classes

It is worth noting that both constructors have empty function bodies. The only work these constructors need to do is give the data members their values. If there is no further work, then the function body is empty.

Defining a Constructor outside the Class Body

Unlike our other constructors, the constructor that takes an istream does have work to do. Inside its function body, this constructor calls read to give the data members new values:

```
Sales_data::Sales_data(std::istream &is)
{
    read(is, *this); // read will read a transaction from is into this object
}
```

Constructors have no return type, so this definition starts with the name of the function we are defining. As with any other member function, when we define a constructor outside of the class body, we must specify the class of which the constructor is a member. Thus, Sales_data::Sales_data says that we're defining the Sales_data member named Sales_data. This member is a constructor because it has the same name as its class.

In this constructor there is no constructor initializer list, although technically speaking, it would be more correct to say that the constructor initializer list is empty. Even though the constructor initializer list is empty, the members of this object are still initialized before the constructor body is executed.

Members that do not appear in the constructor initializer list are initialized by the corresponding in-class initializer (if there is one) or are default initialized. For Sales_data that means that when the function body starts executing, bookNo will be the empty string, and units sold and revenue will both be 0.

To understand the call to read, remember that read's second parameter is a reference to a Sales_data object. In § 7.1.2 (p. 259), we noted that we use this to access the object as a whole, rather than a member of the object. In this case, we use *this to pass "this" object as an argument to the read function.

EXERCISES SECTION 7.1.4

Exercise 7.11: Add constructors to your Sales_data class and write a program to use each of the constructors.

Exercise 7.12: Move the definition of the Sales_data constructor that takes an istream into the body of the Sales_data class.

Exercise 7.13: Rewrite the program from page 255 to use the istream constructor.

Exercise 7.14: Write a version of the default constructor that explicitly initializes the members to the values we have provided as in-class initializers.

Exercise 7.15: Add appropriate constructors to your Person class.

7.1.5 Copy, Assignment, and Destruction

In addition to defining how objects of the class type are initialized, classes also control what happens when we copy, assign, or destroy objects of the class type. Objects are copied in several contexts, such as when we initialize a variable or when we pass or return an object by value (§ 6.2.1, p. 209, and § 6.3.2, p. 224). Objects are assigned when we use the assignment operator (§ 4.4, p. 144). Objects are destroyed when they cease to exist, such as when a local object is destroyed on exit from the block in which it was created (§ 6.1.1, p. 204). Objects stored in a vector (or an array) are destroyed when that vector (or array) is destroyed.

If we do not define these operations, the compiler will synthesize them for us. Ordinarily, the versions that the compiler generates for us execute by copying, assigning, or destroying each member of the object. For example, in our bookstore program in § 7.1.1 (p. 255), when the compiler executes this assignment

We'll show how we can define our own versions of these operations in Chapter 13.

Some Classes Cannot Rely on the Synthesized Versions

Although the compiler will synthesize the copy, assignment, and destruction operations for us, it is important to understand that for some classes the default versions do not behave appropriately. In particular, the synthesized versions are unlikely to work correctly for classes that allocate resources that reside outside the class objects themselves. As one example, in Chapter 12 we'll see how C++ programs allocate and manage dynamic memory. As we'll see in § 13.1.4 (p. 504), classes that manage dynamic memory, generally cannot rely on the synthesized versions of these operations.

However, it is worth noting that many classes that need dynamic memory can (and generally should) use a vector or a string to manage the necessary storage. Classes that use vectors and strings avoid the complexities involved in allocating and deallocating memory.

Moreover, the synthesized versions for copy, assignment, and destruction work correctly for classes that have vector or string members. When we copy or assign an object that has a vector member, the vector class takes care of copying or assigning the elements in that member. When the object is destroyed, the vector member is destroyed, which in turn destroys the elements in the vector. Similarly for strings.

Until you know how to define the operations covered in Chapter 13, the resources your classes allocate should be stored directly as data members of the class.

268 Classes

7.2 Access Control and Encapsulation

At this point, we have defined an interface for our class; but nothing forces users to use that interface. Our class is not yet encapsulated—users can reach inside a Sales_data object and meddle with its implementation. In C++ we use **access specifiers** to enforce encapsulation:

- Members defined after a **public** specifier are accessible to all parts of the program. The public members define the interface to the class.
- Members defined after a **private** specifier are accessible to the member functions of the class but are not accessible to code that uses the class. The private sections encapsulate (i.e., hide) the implementation.

Redefining Sales data once again, we now have

```
class Sales data {
                    // access specifier added
public:
    Sales data() = default;
    Sales data(const std::string &s, unsigned n, double p):
               bookNo(s), units sold(n), revenue(p*n) { }
    Sales data(const std::string &s): bookNo(s) { }
    Sales data(std::istream&);
    std::string isbn() const { return bookNo; }
    Sales data &combine(const Sales data&);
private:
                     // access specifier added
    double avg price() const
        { return units_sold ? revenue/units_sold : 0; }
    std::string bookNo;
    unsigned units sold = 0;
    double revenue = 0.0;
};
```

The constructors and member functions that are part of the interface (e.g., isbn and combine) follow the public specifier; the data members and the functions that are part of the implementation follow the private specifier.

A class may contain zero or more access specifiers, and there are no restrictions on how often an access specifier may appear. Each access specifier specifies the access level of the succeeding members. The specified access level remains in effect until the next access specifier or the end of the class body.

Using the class or struct Keyword

We also made another, more subtle, change: We used the **class keyword** rather than **struct** to open the class definition. This change is strictly stylistic; we can define a class type using either keyword. The only difference between struct and class is the default access level.

A class may define members before the first access specifier. Access to such members depends on how the class is defined. If we use the struct keyword, the members defined before the first access specifier are public; if we use class, then the members are private.