
https://www.pearson.de/9780132874762

Praise for Java Application Architecture

“The fundamentals never go out of style, and in this book Kirk returns
us to the fundamentals of architecting economically interesting software-
intensive systems of quality. You’ll find this work to be well-written,
timely, and full of pragmatic ideas.”

—Grady Booch, IBM Fellow

“Along with GOF’s Design Patterns, Kirk Knoernschild’s Java Application
Architecture is a must-own for every enterprise developer and architect
and on the required reading list for all Paremus engineers.”

—Richard Nicholson, Paremus CEO, President of the OSGi Alliance

“In writing this book, Kirk has done the software community a great ser-
vice: He’s captured much of the received wisdom about modularity in a
form that can be understood by newcomers, taught in computer science
courses, and referred to by experienced programmers. I hope this book
finds the wide audience it deserves.”

—Glyn Normington, Eclipse Virgo Project Lead

“Our industry needs to start thinking in terms of modules—it needs this
book!”

—Chris Chedgey, Founder and CEO, Structure 101

“In this book, Kirk Knoernschild provides us with the design patterns
we need to make modular software development work in the real world.
While it’s true that modularity can help us manage complexity and create
more maintainable software, there’s no free lunch. If you want to achieve
the benefits modularity has to offer, buy this book.”

—Patrick Paulin, Consultant and Trainer, Modular Mind

“Kirk has expertly documented the best practices for using OSGi and
Eclipse runtime technology. A book any senior Java developer needs to
read to better understand how to create great software.”

—Mike Milinkovich, Executive Director, Eclipse Foundation

https://www.pearson.de/9780132874762

CHAPTER 7 REFERENCE IMPLEMENTATION

86

backend. It wouldn’t be difficult, but it’s not what I want to focus on.
Although we’ll show some code snippets as the example progresses, I set
up a Google Code Repository that shows each step in the evolution.2

2. The repository can be found at http://code.google.com/p/kcode/source/browse/#svn/trunk/

billpayevolution/billpay, and each of the subprojects represents a single step in the example.

CustomerSearchAction

CustomerSearchResultsBean

CustomerSearchForm

CustomerBillSearchLoader

Customer

Bill

AuditFacade

Name

Payment

<<interface>>

CustomerEntityLoader

<<interface>>

BillEntityLoader

Figure 7.1 Initial version class diagram

http://code.google.com/p/kcode/source/browse/#svn/trunk/billpayevolution/billpay
http://code.google.com/p/kcode/source/browse/#svn/trunk/billpayevolution/billpay
https://www.pearson.de/9780132874762

7.4 FIRST REFACTORING

87

7.4 F I R S T RE FAC TO R I N G

Packaging everything into a single WAR file for deployment certainly isn’t
modular. In most systems we develop, we try to design layers that encap-
sulate specific behaviors and isolate certain types of change. Typical layers
include a UI layer, a business or domain object layer, and a data access layer.
In this system, we have these three layers. The Struts Action and Form
classes, along with the JSP, represent part of the UI layer. The UI layer is
represented by the upper-portion classes in Figure 7.1. The Customer,
Bill, Name, AuditFacade, and Payment form the business object
layer, and the Loader classes form the data access layer. These classes are
shown in the lower portion of Figure 7.1. Now, here’s a key statement that
you need to take with you:

If I truly have a layered system, then I should be able to break out each

layer into a separate module where modules in the upper layers depend

on modules in lower layers, but not vice versa.

If you try this for one of your systems, it’s likely you’ll find it’s not so
easy. Most development teams feel they have a layered architecture, but
in reality, they don’t because somewhere deep within the bowels of the
system lies an import or reference to a class in a higher-level layer that we
aren’t aware of.

In fact, if I really do have a layered system, then I shouldn’t have to
change anything other than my build script to break the layers into sepa-
rate JAR files. If I do have to change more than a build script, then I didn’t
have a layered system to begin with, and I should perform some architec-
tural refactoring to clean things up. Anyway, the end result is relatively
simple to understand. No code changes. Only a build script change so
that certain classes are allocated to specific modules. Figure 7.2 shows the
structure. This refactoring was an example of applying the Physical Layers
pattern.

Listing 7.1 illustrates a portion of the initial build script where all of
the classes were bundled into the WAR file. Listing 7.2 shows the changes
we’ve made to the build script to create modules for the various layers.
Here, we show only the business object layer. We created a new build tar-
get where we create the module and then added a new line to the dist
target where that module is now included in the WAR file.

Physical Layers

pattern, 162

https://www.pearson.de/9780132874762

CHAPTER 7 REFERENCE IMPLEMENTATION

88

Listing 7.1 Initial Build Script

<target name="compile" depends="init">

 <javac srcdir="${javasrc}:${testsrc}" destdir="${build}">

 <classpath refid="project.class.path"/>

 </javac>

</target>

<target name="bundle" depends="dist">

 <mkdir dir="${deploy}"/>

 <war destfile="${deploy}/billpay.war"

 webxml="WEB-INF/web.xml">

 <fileset dir="jsp"/>

 <webinf dir="WEB-INF">

 <exclude name="web.xml"/>

 <exclude name="lib/servlet-api.jar"/>

 </webinf>

 <classes dir="${build}"/>

 </war>

</target>

Listing 7.2 Build Script with Physical Layers

<target name="compile" depends="init">

 <javac srcdir="${javasrc}:${testsrc}" destdir="${build}">

 <classpath refid="project.class.path"/>

billpay.war

struts.jar

billpay.war

struts.jar

Initial Version Modular Layering

Breaking out the business

object & data access layer

into a separate module

bill.jar

Figure 7.2 Applying the Physical Layers pattern

https://www.pearson.de/9780132874762

7.4 FIRST REFACTORING

89

 </javac>

</target>

<target name="dist" depends="compile">

 <mkdir dir="${bindist}"/>

 <jar jarfile="${bindist}/bill.jar" basedir="${build}"

 excludes="com/extensiblejava/bill/test/**,

 com/extensiblejava/ui/**"/>

</target>

<target name="bundle" depends="dist">

 <mkdir dir="${deploy}"/>

 <war destfile="${deploy}/billpay.war"

 webxml="WEB-INF/web.xml">

 <fileset dir="jsp"/>

 <webinf dir="WEB-INF">

 <exclude name="web.xml"/>

 <exclude name="lib/servlet-api.jar"/>

 </webinf>

 <lib dir="${bindist}" excludes="test.jar"/>

 <classes dir="${build}"

 includes="com/extensiblejava/ui/**"/>

 </war>

</target>

7.4 .1 WR A PPI N G UP A N D GE T TI N G RE A DY FO R TH E

NE X T RE FAC TO R I N G

This first refactoring was simple, but it has significant implications. Fore-
most, it proves that my class-level architecture was decent. I was able to
break the system out into modules for the various layers without changing
a bunch of code. Really, that’s the reason why it was so simple—because
the logical design was decent. Had there been violations in the layered
structure, it would have been significantly more difficult pulling off this
refactoring because I would have been forced to remove the undesired
dependencies.

Yet, as we’ll see, the existing design may meet the needs of today, but
it’s going to have to evolve as change emerges. In the second refactoring,
we look at what we need to do to integrate with another auditing system
and how modularity can help us do this. As we progress, the amazing
transformation of a system lacking modularity to a highly modularized
version will unfold. In the next few steps, we apply two refactorings using

Abstract Modules

pattern, 222

Acyclic Relationships

pattern, 146

https://www.pearson.de/9780132874762

CHAPTER 7 REFERENCE IMPLEMENTATION

90

two different modularity patterns: Abstract Modules and Acyclic Rela-
tionships. First, we separate the bill and audit functionality into sepa-
rate modules so we can independently manage (develop, deploy, and so
on) them. Second, we remove the cyclic dependency between these two
modules.

7.5 SE C O N D RE FAC TO R I N G

In the class diagram shown in Figure 7.1, the Bill class has a bidirectional
relationship to the AuditFacade class. This design has two fundamen-
tal flaws. The Bill is tightly coupled to the concrete AuditFacade
class, and the relationship is bidirectional. Bad all around! This can be
seen in Listing 7.3, illustrating the Bill class’s audit method.

Listing 7.3 Audit Method of the Bill Class

public void audit() {

 AuditFacade auditor = new AuditFacade();

 this.billData.setAuditedAmount(auditor.audit(this));

 this.persist();

}

Notice that the audit method actually creates the AuditFacade,
calls the audit method, and passes a reference to Bill. Ugly. Let’s clean
this up a little bit. Although there are obvious technology reasons why we
need to clean this up, there is also a motivating business force.

The system needs to go live with the current vendor’s auditing system,

but the business has indicated that they aren’t renewing the contract

with the vendor and are in ongoing negotiation with another vendor. The

contract expires in six months, but we deliver the initial version of the

system in three months.

So, three months after deployment, we know we need to swap out
auditing systems.

We will apply the Abstract Modules pattern, which states that we should
depend upon the abstract elements of a module. We’ll start by refactoring
the AuditFacade class to an interface and create a separate Audit-
Facade1 implementation. This solves the first half of our problem, which

Abstract Modules

pattern, 222

https://www.pearson.de/9780132874762

7.5 SECOND REFACTORING

91

is the tight coupling between the Bill and AuditFacade implementa-
tion. The result is the class diagram shown in Figure 7.3.

Of course, the Bill can no longer create the AuditFacade imple-
mentation. Doing so would compromise the work we’ve done because
Bill would still be coupled to AuditFacade1. To deal with this chal-
lenge, the AuditFacade interface is now passed into the Bill’s audit
method, allowing us to swap out AuditFacade implementations. List-
ing 7.4 shows the modified audit method.

Listing 7.4 The New Audit Method Accepting the AuditFacade Interface

public void audit(AuditFacade auditor) {

 this.billData.setAuditedAmount(auditor.audit(this));

 this.persist();

}

If we take this flexible class structure and continue to deploy in the
single bill.jar module, we have the flexibility to swap out AuditFa-
cade implementations at the class level, but we’re still required to pack-
age everything up into a single bundle and deploy it as a single module.
So, what we really must do is separate the audit functionality into a mod-
ule separate from the bill. Separating the AuditFacade interface and
AuditFacade1 implementation into separate modules results in the dia-
gram illustrated in Figure 7.4. Here’s where the bidirectional relationship

cyclic

dependencies, 50

AuditFacade1

Bill

<<interface>>

AuditFacade

Figure 7.3 Refactoring AuditFacade to an interface

https://www.pearson.de/9780132874762

